These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 17376865)

  • 1. Thermodynamic constraints on stochastic acceleration in compressional turbulence.
    Fisk LA; Gloeckler G
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5749-54. PubMed ID: 17376865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock.
    Richardson JD; Kasper JC; Wang C; Belcher JW; Lazarus AJ
    Nature; 2008 Jul; 454(7200):63-6. PubMed ID: 18596800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediation of the solar wind termination shock by non-thermal ions.
    Decker RB; Krimigis SM; Roelof EC; Hill ME; Armstrong TP; Gloeckler G; Hamilton DC; Lanzerotti LJ
    Nature; 2008 Jul; 454(7200):67-70. PubMed ID: 18596801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms.
    Wang L; Lin RP; Larson DE; Luhmann JG
    Nature; 2008 Jul; 454(7200):81-3. PubMed ID: 18596805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An asymmetric solar wind termination shock.
    Stone EC; Cummings AC; McDonald FB; Heikkila BC; Lal N; Webber WR
    Nature; 2008 Jul; 454(7200):71-4. PubMed ID: 18596802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heliosphere as an astrophysical laboratory for particle acceleration.
    Terasawa T; Scholer M
    Science; 1989 Jun; 244(4908):1050-7. PubMed ID: 17741043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voyager 1 explores the termination shock region and the heliosheath beyond.
    Stone EC; Cummings AC; McDonald FB; Heikkila BC; Lal N; Webber WR
    Science; 2005 Sep; 309(5743):2017-20. PubMed ID: 16179468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autogenous and efficient acceleration of energetic ions upstream of Earth's bow shock.
    Turner DL; Wilson LB; Liu TZ; Cohen IJ; Schwartz SJ; Osmane A; Fennell JF; Clemmons JH; Blake JB; Westlake J; Mauk BH; Jaynes AN; Leonard T; Baker DN; Strangeway RJ; Russell CT; Gershman DJ; Avanov L; Giles BL; Torbert RB; Broll J; Gomez RG; Fuselier SA; Burch JL
    Nature; 2018 Sep; 561(7722):206-210. PubMed ID: 30209369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.
    Matsumoto Y; Amano T; Kato TN; Hoshino M
    Science; 2015 Feb; 347(6225):974-8. PubMed ID: 25722406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voyager 1 in the foreshock, termination shock, and heliosheath.
    Decker RB; Krimigis SM; Roelof EC; Hill ME; Armstrong TP; Gloeckler G; Hamilton DC; Lanzerotti LJ
    Science; 2005 Sep; 309(5743):2020-4. PubMed ID: 16179469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS.
    Halekas JS; Poppe AR; Lue C; Farrell WM; McFadden JP
    J Geophys Res Space Phys; 2017 Jun; 122(6):6240-6254. PubMed ID: 33479575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.
    Bovet A; Fasoli A; Ricci P; Furno I; Gustafson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):041101. PubMed ID: 25974432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Observations of Interstellar Pickup Ions from 1 au to the Outer Heliosphere.
    Zirnstein EJ; Möbius E; Zhang M; Bower J; Elliott HA; McComas DJ; Pogorelov NV; Swaczyna P
    Space Sci Rev; 2022; 218(4):28. PubMed ID: 35574273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediation of collisionless turbulent dissipation through cyclotron resonance.
    Bowen TA; Bale SD; Chandran BDG; Chasapis A; Chen CHK; Dudok de Wit T; Mallet A; Meyrand R; Squire J
    Nat Astron; 2024; 8(4):482-490. PubMed ID: 38659611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidization of collisionless plasma turbulence.
    Meyrand R; Kanekar A; Dorland W; Schekochihin AA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1185-1194. PubMed ID: 30610178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle Acceleration in Relativistic Plasma Turbulence.
    Comisso L; Sironi L
    Phys Rev Lett; 2018 Dec; 121(25):255101. PubMed ID: 30608827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic fields at the solar wind termination shock.
    Burlaga LF; Ness NF; Acuña MH; Lepping RP; Connerney JE; Richardson JD
    Nature; 2008 Jul; 454(7200):75-7. PubMed ID: 18596803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.
    Reynolds AM
    Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron stochastic acceleration in laboratory-produced kinetic turbulent plasmas.
    Yuan D; Lei Z; Wei H; Zhang Z; Zhong J; Li Y; Ping Y; Zhang Y; Li Y; Wang F; Liang G; Qiao B; Fu C; Liu H; Zhang P; Zhu J; Zhao G; Zhang J
    Nat Commun; 2024 Jul; 15(1):5897. PubMed ID: 39003257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intense plasma waves at and near the solar wind termination shock.
    Gurnett DA; Kurth WS
    Nature; 2008 Jul; 454(7200):78-80. PubMed ID: 18596804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.