These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 17376969)
1. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. Liodis P; Denaxa M; Grigoriou M; Akufo-Addo C; Yanagawa Y; Pachnis V J Neurosci; 2007 Mar; 27(12):3078-89. PubMed ID: 17376969 [TBL] [Abstract][Full Text] [Related]
2. Origins of cortical interneuron subtypes. Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753 [TBL] [Abstract][Full Text] [Related]
3. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. Zhao Y; Flandin P; Long JE; Cuesta MD; Westphal H; Rubenstein JL J Comp Neurol; 2008 Sep; 510(1):79-99. PubMed ID: 18613121 [TBL] [Abstract][Full Text] [Related]
4. The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex. Neves G; Shah MM; Liodis P; Achimastou A; Denaxa M; Roalfe G; Sesay A; Walker MC; Pachnis V Cereb Cortex; 2013 Aug; 23(8):1811-23. PubMed ID: 22710612 [TBL] [Abstract][Full Text] [Related]
5. Origin and molecular specification of striatal interneurons. Marin O; Anderson SA; Rubenstein JL J Neurosci; 2000 Aug; 20(16):6063-76. PubMed ID: 10934256 [TBL] [Abstract][Full Text] [Related]
6. Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. Alifragis P; Liapi A; Parnavelas JG J Neurosci; 2004 Jun; 24(24):5643-8. PubMed ID: 15201337 [TBL] [Abstract][Full Text] [Related]
7. CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. Elbert A; Vogt D; Watson A; Levy M; Jiang Y; Brûlé E; Rowland ME; Rubenstein J; Bérubé NG J Neurosci; 2019 Jan; 39(1):177-192. PubMed ID: 30377227 [TBL] [Abstract][Full Text] [Related]
8. The development of MGE-derived cortical interneurons: An Lhx6 tale. Christodoulou O; Maragkos I; Antonakou V; Denaxa M Int J Dev Biol; 2022; 66(1-2-3):43-49. PubMed ID: 34881792 [TBL] [Abstract][Full Text] [Related]
9. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Du T; Xu Q; Ocbina PJ; Anderson SA Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674 [TBL] [Abstract][Full Text] [Related]
10. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Vogt D; Hunt RF; Mandal S; Sandberg M; Silberberg SN; Nagasawa T; Yang Z; Baraban SC; Rubenstein JL Neuron; 2014 Apr; 82(2):350-64. PubMed ID: 24742460 [TBL] [Abstract][Full Text] [Related]
11. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex. Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668 [TBL] [Abstract][Full Text] [Related]
12. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473 [TBL] [Abstract][Full Text] [Related]
13. Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. Wang Y; Dye CA; Sohal V; Long JE; Estrada RC; Roztocil T; Lufkin T; Deisseroth K; Baraban SC; Rubenstein JL J Neurosci; 2010 Apr; 30(15):5334-45. PubMed ID: 20392955 [TBL] [Abstract][Full Text] [Related]
14. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134 [TBL] [Abstract][Full Text] [Related]
15. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Nóbrega-Pereira S; Kessaris N; Du T; Kimura S; Anderson SA; Marín O Neuron; 2008 Sep; 59(5):733-45. PubMed ID: 18786357 [TBL] [Abstract][Full Text] [Related]
16. Cortical interneuron fate determination: diverse sources for distinct subtypes? Xu Q; de la Cruz E; Anderson SA Cereb Cortex; 2003 Jun; 13(6):670-6. PubMed ID: 12764043 [TBL] [Abstract][Full Text] [Related]
17. FLRT2 and FLRT3 Cooperate in Maintaining the Tangential Migratory Streams of Cortical Interneurons during Development. Fleitas C; Marfull-Oromí P; Chauhan D; Del Toro D; Peguera B; Zammou B; Rocandio D; Klein R; Espinet C; Egea J J Neurosci; 2021 Sep; 41(35):7350-7362. PubMed ID: 34301831 [TBL] [Abstract][Full Text] [Related]
18. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration. Katayama K; Imai F; Campbell K; Lang RA; Zheng Y; Yoshida Y Development; 2013 Aug; 140(15):3139-45. PubMed ID: 23861058 [TBL] [Abstract][Full Text] [Related]
19. Neuronal activity is required for the development of specific cortical interneuron subtypes. De Marco García NV; Karayannis T; Fishell G Nature; 2011 Apr; 472(7343):351-5. PubMed ID: 21460837 [TBL] [Abstract][Full Text] [Related]