BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 17376981)

  • 1. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse.
    Wölfel M; Lou X; Schneggenburger R
    J Neurosci; 2007 Mar; 27(12):3198-210. PubMed ID: 17376981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.
    Wölfel M; Schneggenburger R
    J Neurosci; 2003 Aug; 23(18):7059-68. PubMed ID: 12904466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular calcium dependence of transmitter release rates at a fast central synapse.
    Schneggenburger R; Neher E
    Nature; 2000 Aug; 406(6798):889-93. PubMed ID: 10972290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic calcium and control of vesicle fusion.
    Schneggenburger R; Neher E
    Curr Opin Neurobiol; 2005 Jun; 15(3):266-74. PubMed ID: 15919191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion.
    Lou X; Scheuss V; Schneggenburger R
    Nature; 2005 May; 435(7041):497-501. PubMed ID: 15917809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment.
    Kushmerick C; Renden R; von Gersdorff H
    J Neurosci; 2006 Feb; 26(5):1366-77. PubMed ID: 16452660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held.
    Kochubey O; Han Y; Schneggenburger R
    J Physiol; 2009 Jun; 587(Pt 12):3009-23. PubMed ID: 19403608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle pools and short-term synaptic depression: lessons from a large synapse.
    Schneggenburger R; Sakaba T; Neher E
    Trends Neurosci; 2002 Apr; 25(4):206-12. PubMed ID: 11998689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.
    Felmy F; Neher E; Schneggenburger R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15200-5. PubMed ID: 14630950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse.
    Sakaba T; Neher E
    J Neurosci; 2001 Jan; 21(2):462-76. PubMed ID: 11160426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of a subset of release-ready vesicles by the presynaptic protein Mover.
    Pofantis E; Neher E; Dresbach T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between facilitation and depression at a large CNS synapse reveals mechanisms of short-term plasticity.
    Müller M; Goutman JD; Kochubey O; Schneggenburger R
    J Neurosci; 2010 Feb; 30(6):2007-16. PubMed ID: 20147529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
    Korogod N; Lou X; Schneggenburger R
    J Neurosci; 2005 May; 25(21):5127-37. PubMed ID: 15917453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression.
    Wu LG; Borst JG
    Neuron; 1999 Aug; 23(4):821-32. PubMed ID: 10482247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C.
    Lou X; Korogod N; Brose N; Schneggenburger R
    J Neurosci; 2008 Aug; 28(33):8257-67. PubMed ID: 18701688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography.
    Meinrenken CJ; Borst JG; Sakmann B
    J Neurosci; 2002 Mar; 22(5):1648-67. PubMed ID: 11880495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse.
    Chen Z; Das B; Nakamura Y; DiGregorio DA; Young SM
    J Neurosci; 2015 Feb; 35(5):2083-100. PubMed ID: 25653365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) channels and transmitter release at the active zone.
    Schneggenburger R; Han Y; Kochubey O
    Cell Calcium; 2012; 52(3-4):199-207. PubMed ID: 22682961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse.
    Hosoi N; Sakaba T; Neher E
    J Neurosci; 2007 Dec; 27(52):14286-98. PubMed ID: 18160636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
    Suyama S; Hikima T; Sakagami H; Ishizuka T; Yawo H
    Neurosci Res; 2007 Dec; 59(4):481-90. PubMed ID: 17933408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.