BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17377064)

  • 21. Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation.
    Robidoux J; Kumar N; Daniel KW; Moukdar F; Cyr M; Medvedev AV; Collins S
    J Biol Chem; 2006 Dec; 281(49):37794-802. PubMed ID: 17032647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation.
    Zheng H; Loh HH; Law PY
    Mol Pharmacol; 2008 Jan; 73(1):178-90. PubMed ID: 17947509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PKA phosphorylation of Src mediates Rap1 activation in NGF and cAMP signaling in PC12 cells.
    Obara Y; Labudda K; Dillon TJ; Stork PJ
    J Cell Sci; 2004 Dec; 117(Pt 25):6085-94. PubMed ID: 15546918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 17beta-estradiol-mediated neuroprotection and ERK activation require a pertussis toxin-sensitive mechanism involving GRK2 and beta-arrestin-1.
    Dominguez R; Hu E; Zhou M; Baudry M
    J Neurosci; 2009 Apr; 29(13):4228-38. PubMed ID: 19339617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling.
    Charest PG; Oligny-Longpré G; Bonin H; Azzi M; Bouvier M
    Cell Signal; 2007 Jan; 19(1):32-41. PubMed ID: 16857342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular determinants and feedback circuits regulating type 2 CRH receptor signal integration.
    Markovic D; Punn A; Lehnert H; Grammatopoulos DK
    Biochim Biophys Acta; 2011 May; 1813(5):896-907. PubMed ID: 21338628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of EGF-induced ERK/MAP kinase-mediated astrocyte proliferation by mu opioids: integration of G protein and beta-arrestin 2-dependent pathways.
    Miyatake M; Rubinstein TJ; McLennan GP; Belcheva MM; Coscia CJ
    J Neurochem; 2009 Jul; 110(2):662-74. PubMed ID: 19457093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but β-arrestin-independent pathways.
    Huang H; He X; Deng X; Li G; Ying G; Sun Y; Shi L; Benovic JL; Zhou N
    Biochemistry; 2010 Dec; 49(51):10862-72. PubMed ID: 21126059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ERK and β-arrestin interaction: a converging point of signaling pathways for multiple types of cell surface receptors.
    Eishingdrelo H; Sun W; Li H; Wang L; Eishingdrelo A; Dai S; McKew JC; Zheng W
    J Biomol Screen; 2015 Mar; 20(3):341-9. PubMed ID: 25361946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells.
    Xu J; Jian B; Chu R; Lu Z; Li Q; Dunlop J; Rosenzweig-Lipson S; McGonigle P; Levy RJ; Liang B
    Am J Pathol; 2002 Dec; 161(6):2209-18. PubMed ID: 12466135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D
    Liu H; Acharya S; Sudan SK; Hu L; Wu C; Cao Y; Li H; Zhang X
    FEBS J; 2023 Nov; 290(21):5204-5233. PubMed ID: 37531324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2.
    Qi S; Xin Y; Qi Z; Xu Y; Diao Y; Lan L; Luo L; Yin Z
    Cell Signal; 2014 Mar; 26(3):594-602. PubMed ID: 24308965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade.
    Al Rahim M; Nakajima A; Saigusa D; Tetsu N; Maruyama Y; Shibuya M; Yamakoshi H; Tomioka Y; Iwabuchi Y; Ohizumi Y; Yamakuni T
    Biochemistry; 2009 Aug; 48(32):7713-21. PubMed ID: 19601643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor necrosis factor receptor-1 can function through a G alpha q/11-beta-arrestin-1 signaling complex.
    Kawamata Y; Imamura T; Babendure JL; Lu JC; Yoshizaki T; Olefsky JM
    J Biol Chem; 2007 Sep; 282(39):28549-28556. PubMed ID: 17664271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. β-Arrestin-biased signaling mediates memory reconsolidation.
    Liu X; Ma L; Li HH; Huang B; Li YX; Tao YZ; Ma L
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4483-8. PubMed ID: 25831532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK.
    Kobayashi H; Narita Y; Nishida M; Kurose H
    Cell Signal; 2005 Oct; 17(10):1248-53. PubMed ID: 16038799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex.
    Bjørgo E; Solheim SA; Abrahamsen H; Baillie GS; Brown KM; Berge T; Okkenhaug K; Houslay MD; Taskén K
    Mol Cell Biol; 2010 Apr; 30(7):1660-72. PubMed ID: 20086095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells.
    Lynch MJ; Baillie GS; Mohamed A; Li X; Maisonneuve C; Klussmann E; van Heeke G; Houslay MD
    J Biol Chem; 2005 Sep; 280(39):33178-89. PubMed ID: 16030021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of G protein signals by extracellular signal-regulated protein kinases in SK-N-MC neuroepithelioma cells.
    Chan AS; Yeung WW; Wong YH
    J Neurochem; 2005 Sep; 94(5):1457-70. PubMed ID: 15992362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposure to TARC alters beta2-adrenergic receptor signaling in human peripheral blood T lymphocytes.
    Heijink IH; Vellenga E; Oostendorp J; de Monchy JG; Postma DS; Kauffman HF
    Am J Physiol Lung Cell Mol Physiol; 2005 Jul; 289(1):L53-9. PubMed ID: 15749741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.