These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17377742)
1. A novel method for imaging in vivo degradation of poly(L-glutamic acid), a biodegradable drug carrier. Melancon MP; Wang W; Wang Y; Shao R; Ji X; Gelovani JG; Li C Pharm Res; 2007 Jun; 24(6):1217-24. PubMed ID: 17377742 [TBL] [Abstract][Full Text] [Related]
2. Development of a macromolecular dual-modality MR-optical imaging for sentinel lymph node mapping. Melancon MP; Wang Y; Wen X; Bankson JA; Stephens LC; Jasser S; Gelovani JG; Myers JN; Li C Invest Radiol; 2007 Aug; 42(8):569-78. PubMed ID: 17620940 [TBL] [Abstract][Full Text] [Related]
3. Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Melancon MP; Lu W; Huang Q; Thapa P; Zhou D; Ng C; Li C Biomaterials; 2010 Sep; 31(25):6567-73. PubMed ID: 20537382 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. Tansey W; Ke S; Cao XY; Pasuelo MJ; Wallace S; Li C J Control Release; 2004 Jan; 94(1):39-51. PubMed ID: 14684270 [TBL] [Abstract][Full Text] [Related]
5. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis. Calfon MA; Rosenthal A; Mallas G; Mauskapf A; Nudelman RN; Ntziachristos V; Jaffer FA J Vis Exp; 2011 Aug; (54):. PubMed ID: 21847078 [TBL] [Abstract][Full Text] [Related]
6. Near-Infrared Fluorescent Activated Polymeric Probe for Imaging Intraluminal Colorectal Cancer Tumors. Kopansky-Groisman E; Kogan-Zviagin I; Sella-Tavor O; Oron-Herman M; David A Biomacromolecules; 2019 Sep; 20(9):3547-3556. PubMed ID: 31381303 [TBL] [Abstract][Full Text] [Related]
7. Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. Melancon MP; Elliott AM; Shetty A; Huang Q; Stafford RJ; Li C J Control Release; 2011 Dec; 156(2):265-72. PubMed ID: 21763373 [TBL] [Abstract][Full Text] [Related]
8. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Bremer C; Tung CH; Bogdanov A; Weissleder R Radiology; 2002 Mar; 222(3):814-8. PubMed ID: 11867806 [TBL] [Abstract][Full Text] [Related]
9. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles. Park HS; Lee JE; Cho MY; Noh YW; Sung MH; Poo H; Hong KS; Lim YT Nanotechnology; 2011 Nov; 22(46):465603. PubMed ID: 22033077 [TBL] [Abstract][Full Text] [Related]
10. Molecular imaging of Cathepsin E-positive tumors in mice using a novel protease-activatable fluorescent probe. Abd-Elgaliel WR; Cruz-Monserrate Z; Logsdon CD; Tung CH Mol Biosyst; 2011 Dec; 7(12):3207-3213. PubMed ID: 21935563 [TBL] [Abstract][Full Text] [Related]
11. Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer. Vega J; Ke S; Fan Z; Wallace S; Charsangavej C; Li C Pharm Res; 2003 May; 20(5):826-32. PubMed ID: 12751641 [TBL] [Abstract][Full Text] [Related]
12. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Jaffer FA; Kim DE; Quinti L; Tung CH; Aikawa E; Pande AN; Kohler RH; Shi GP; Libby P; Weissleder R Circulation; 2007 May; 115(17):2292-8. PubMed ID: 17420353 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. Jackson EF; Esparza-Coss E; Wen X; Ng CS; Daniel SL; Price RE; Rivera B; Charnsangavej C; Gelovani JG; Li C Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):830-8. PubMed ID: 17379450 [TBL] [Abstract][Full Text] [Related]
14. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Yildiz T; Gu R; Zauscher S; Betancourt T Int J Nanomedicine; 2018; 13():6961-6986. PubMed ID: 30464453 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent. Wen X; Jackson EF; Price RE; Kim EE; Wu Q; Wallace S; Charnsangavej C; Gelovani JG; Li C Bioconjug Chem; 2004; 15(6):1408-15. PubMed ID: 15546209 [TBL] [Abstract][Full Text] [Related]
16. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats. Chai HJ; Kiew LV; Chin Y; Norazit A; Mohd Noor S; Lo YL; Looi CY; Lau YS; Lim TM; Wong WF; Abdullah NA; Abdul Sattar MZ; Johns EJ; Chik Z; Chung LY Int J Nanomedicine; 2017; 12():577-591. PubMed ID: 28144140 [TBL] [Abstract][Full Text] [Related]
17. Targeting MMP-14 for dual PET and fluorescence imaging of glioma in preclinical models. Kasten BB; Jiang K; Cole D; Jani A; Udayakumar N; Gillespie GY; Lu G; Dai T; Rosenthal EL; Markert JM; Rao J; Warram JM Eur J Nucl Med Mol Imaging; 2020 Jun; 47(6):1412-1426. PubMed ID: 31773232 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Tung CH; Bredow S; Mahmood U; Weissleder R Bioconjug Chem; 1999; 10(5):892-6. PubMed ID: 10502358 [TBL] [Abstract][Full Text] [Related]