These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Ferber S; Baabur-Cohen H; Blau R; Epshtein Y; Kisin-Finfer E; Redy O; Shabat D; Satchi-Fainaro R Cancer Lett; 2014 Sep; 352(1):81-9. PubMed ID: 24614283 [TBL] [Abstract][Full Text] [Related]
23. Application of near-infrared fluorescence imaging using a polymeric nanoparticle-based probe for the diagnosis and therapeutic monitoring of colon cancer. Yoon SM; Myung SJ; Kim IW; Do EJ; Ye BD; Ryu JH; Park K; Kim K; Kwon IC; Kim MJ; Moon DH; Yang DH; Kim KJ; Byeon JS; Yang SK; Kim JH Dig Dis Sci; 2011 Oct; 56(10):3005-13. PubMed ID: 21465144 [TBL] [Abstract][Full Text] [Related]
24. Near-infrared optical imaging of protease activity for tumor detection. Mahmood U; Tung CH; Bogdanov A; Weissleder R Radiology; 1999 Dec; 213(3):866-70. PubMed ID: 10580968 [TBL] [Abstract][Full Text] [Related]
25. Ratio imaging of enzyme activity using dual wavelength optical reporters. Kircher MF; Josephson L; Weissleder R Mol Imaging; 2002; 1(2):89-95. PubMed ID: 12920849 [TBL] [Abstract][Full Text] [Related]
26. Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model. Biffi S; Dal Monego S; Dullin C; Garrovo C; Bosnjak B; Licha K; Welker P; Epstein MM; Alves F PLoS One; 2013; 8(2):e57150. PubMed ID: 23437332 [TBL] [Abstract][Full Text] [Related]
27. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Weissleder R; Tung CH; Mahmood U; Bogdanov A Nat Biotechnol; 1999 Apr; 17(4):375-8. PubMed ID: 10207887 [TBL] [Abstract][Full Text] [Related]
28. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Hernandez R; Sun H; England CG; Valdovinos HF; Ehlerding EB; Barnhart TE; Yang Y; Cai W Theranostics; 2016; 6(11):1918-33. PubMed ID: 27570560 [TBL] [Abstract][Full Text] [Related]
29. Molecularly targeted protease-activated probes for visualization of glioblastoma: a comparison with 5-ALA. Konečná D; Výmola P; Ternerová N; Výmolová B; Garcia-Borja E; Mateu R; Šroubek F; Pankrác J; Widen JC; Bogyo M; Netuka D; Bušek P; Šedo A J Neurosurg; 2024 Sep; 141(3):602-613. PubMed ID: 38552239 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous Monitoring of Multi-Enzyme Activity and Concentration in Tumor Using a Triply Labeled Fluorescent In Vivo Imaging Probe. Tam J; Pilozzi A; Mahmood U; Huang X Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32349205 [TBL] [Abstract][Full Text] [Related]
31. Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Wunderbaldinger P; Turetschek K; Bremer C Eur Radiol; 2003 Sep; 13(9):2206-11. PubMed ID: 12802615 [TBL] [Abstract][Full Text] [Related]
32. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe. Shimizu Y; Temma T; Hara I; Makino A; Kondo N; Ozeki E; Ono M; Saji H Cancer Sci; 2014 Aug; 105(8):1056-62. PubMed ID: 24863849 [TBL] [Abstract][Full Text] [Related]
33. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Hsu AR; Hou LC; Veeravagu A; Greve JM; Vogel H; Tse V; Chen X Mol Imaging Biol; 2006; 8(6):315-23. PubMed ID: 17053862 [TBL] [Abstract][Full Text] [Related]
34. A novel near-infrared fluorescence imaging probe for in vivo neutrophil tracking. Xiao L; Zhang Y; Berr SS; Chordia MD; Pramoonjago P; Pu L; Pan D Mol Imaging; 2012; 11(5):372-82. PubMed ID: 22954181 [TBL] [Abstract][Full Text] [Related]
35. Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Yhee JY; Kim SA; Koo H; Son S; Ryu JH; Youn IC; Choi K; Kwon IC; Kim K Theranostics; 2012; 2(2):179-89. PubMed ID: 22375156 [TBL] [Abstract][Full Text] [Related]
36. Near-Infrared Activatable Phthalocyanine-Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Cheah HY; Gallon E; Dumoulin F; Hoe SZ; Japundžić-Žigon N; Glumac S; Lee HB; Anand P; Chung LY; Vicent MJ; Kiew LV Mol Pharm; 2018 Jul; 15(7):2594-2605. PubMed ID: 29763568 [TBL] [Abstract][Full Text] [Related]
37. A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Messerli SM; Prabhakar S; Tang Y; Shah K; Cortes ML; Murthy V; Weissleder R; Breakefield XO; Tung CH Neoplasia; 2004; 6(2):95-105. PubMed ID: 15140398 [TBL] [Abstract][Full Text] [Related]
38. Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice. Zou Y; Wu QP; Tansey W; Chow D; Hung MC; Charnsangavej C; Wallace S; Li C Int J Oncol; 2001 Feb; 18(2):331-6. PubMed ID: 11172600 [TBL] [Abstract][Full Text] [Related]
39. Development of a new bioactivatable fluorescent probe for quantification of apolipoprotein A-I proteolytic degradation in vitro and in vivo. Maafi F; Li B; Gebhard C; Brodeur MR; Nachar W; Villeneuve L; Lesage F; Rhainds D; Rhéaume E; Tardif JC Atherosclerosis; 2017 Mar; 258():8-19. PubMed ID: 28167355 [TBL] [Abstract][Full Text] [Related]