These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17379137)

  • 1. Antifungal tradecraft by cholesterol oxidase.
    Nesbitt NM; Sampson NS
    Chem Biol; 2007 Mar; 14(3):238-41. PubMed ID: 17379137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin.
    Mendes MV; Recio E; Antón N; Guerra SM; Santos-Aberturas J; Martín JF; Aparicio JF
    Chem Biol; 2007 Mar; 14(3):279-90. PubMed ID: 17379143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Natamycin Production by Cholesterol Oxidase Overexpression in Streptomyces gilvosporeus.
    Wang M; Wang S; Zong G; Hou Z; Liu F; Liao DJ; Zhu X
    J Microbiol Biotechnol; 2016 Feb; 26(2):241-7. PubMed ID: 26502732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial cholesterol oxidases: bioconversion enzymes or signal proteins?
    Aparicio JF; Martín JF
    Mol Biosyst; 2008 Aug; 4(8):804-9. PubMed ID: 18633481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol peroxidation by Pseudomonas fluorescens cholesterol oxidase.
    Teng JI; Smith LL
    Steroids; 1996 Nov; 61(11):627-33. PubMed ID: 8916355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol oxidase: biotechnological applications.
    Pollegioni L; Piubelli L; Molla G
    FEBS J; 2009 Dec; 276(23):6857-70. PubMed ID: 19843167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Library screening studies to investigate substrate specificity in the reaction catalyzed by cholesterol oxidase.
    Xiang J; Sampson NS
    Protein Eng Des Sel; 2004 Apr; 17(4):341-8. PubMed ID: 15136716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment.
    Bouaoud C; Lebouille JG; Mendes E; De Braal HE; Meesters GM
    J Liposome Res; 2016; 26(2):103-12. PubMed ID: 26009272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach.
    Arora A; Raghuraman H; Chattopadhyay A
    Biochem Biophys Res Commun; 2004 Jun; 318(4):920-6. PubMed ID: 15147960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol oxidase: a model flavoprotein oxidase and a biotechnological tool.
    Pollegioni L
    FEBS J; 2009 Dec; 276(23):6825. PubMed ID: 19843170
    [No Abstract]   [Full Text] [Related]  

  • 11. Two moles of O2 consumption and one mole of H2O2 formation during cholesterol peroxidation with cholesterol oxidase from Pseudomonas sp. strain ST-200.
    Doukyu N; Aono R
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):621-7. PubMed ID: 10417325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes.
    Wang MM; Olsher M; Sugár IP; Chong PL
    Biochemistry; 2004 Mar; 43(8):2159-66. PubMed ID: 14979712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Catalytic properties of cholesterol oxidase in the cholesterol oxidation reaction in an aqueous medium].
    Aleksandrovskiĭ IaA
    Biokhimiia; 1987 Oct; 52(10):1696-703. PubMed ID: 3480759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the polar head structure of polyene macrolide antifungal antibiotics on the mode of permeabilization of ergosterol- and cholesterol-containing lipidic vesicles studied by 31P-NMR.
    Cybulska B; Herve M; Borowski E; Gary-Bobo CM
    Mol Pharmacol; 1986 Mar; 29(3):293-8. PubMed ID: 3951434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials with fungi-bioinspired surface for efficient binding and fungi-sensitive release of antifungal agents.
    Segura T; Puga AM; Burillo G; Llovo J; Brackman G; Coenye T; Concheiro A; Alvarez-Lorenzo C
    Biomacromolecules; 2014 May; 15(5):1860-70. PubMed ID: 24712760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy.
    Gruszecki WI; Luchowski R; Gagoś M; Arczewska M; Sarkar P; Hereć M; Myśliwa-Kurdziel B; Strzałka K; Gryczynski I; Gryczynski Z
    Biophys Chem; 2009 Jul; 143(1-2):95-101. PubMed ID: 19457605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study.
    Czub J; Baginski M
    J Phys Chem B; 2006 Aug; 110(33):16743-53. PubMed ID: 16913814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of structural organization of cholesterol aggregates in aqueous-organic media on its oxidation reaction, catalyzed by cholesterol oxidase].
    Aleksandrovskiĭ IaA; Titov VN
    Biokhimiia; 1993 Aug; 58(9):1408-19. PubMed ID: 8218565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase.
    Devadoss A; Burgess JD
    J Am Chem Soc; 2004 Aug; 126(33):10214-5. PubMed ID: 15315412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes.
    Wang MM; Sugar IP; Chong PL
    Biochemistry; 1998 Aug; 37(34):11797-805. PubMed ID: 9718302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.