BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1737916)

  • 1. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taurocholate transport by human ileal brush border membrane vesicles.
    Barnard JA; Ghishan FK
    Gastroenterology; 1987 Nov; 93(5):925-33. PubMed ID: 2443416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M; Kinne R; Tran T; Arias IM
    J Clin Invest; 1984 Mar; 73(3):659-63. PubMed ID: 6707198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Kinne R; Murer H
    Biochem J; 1978 Sep; 174(3):951-8. PubMed ID: 581553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ; Courchene SM; Blitzer BL
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrogenicity of Na-coupled bile salt transport in isolated rat hepatocytes.
    Weinman SA; Weeks RP
    Am J Physiol; 1993 Jul; 265(1 Pt 1):G73-80. PubMed ID: 8338174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic taurocholate uptake is electrogenic and influenced by transmembrane potential difference.
    Lidofsky SD; Fitz JG; Weisiger RA; Scharschmidt BF
    Am J Physiol; 1993 Mar; 264(3 Pt 1):G478-85. PubMed ID: 8460701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential.
    Edmondson JW; Miller BA; Lumeng L
    Am J Physiol; 1985 Oct; 249(4 Pt 1):G427-33. PubMed ID: 4050993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.
    Meier PJ; St Meier-Abt A; Barrett C; Boyer JL
    J Biol Chem; 1984 Aug; 259(16):10614-22. PubMed ID: 6469975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism.
    Bear CE; Davison JS; Shaffer EA
    Biochim Biophys Acta; 1987 Oct; 903(2):388-94. PubMed ID: 2443174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles.
    Stieger B; O'Neill B; Meier PJ
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):67-74. PubMed ID: 1599411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG; Meijer DK
    Liver; 1982 Mar; 2(1):28-34. PubMed ID: 7176836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ontogenically regulated 48-kDa protein is a component of the Na(+)-bile acid cotransporter of rat liver.
    Ananthanarayanan M; Bucuvalas JC; Shneider BL; Sippel CJ; Suchy FJ
    Am J Physiol; 1991 Nov; 261(5 Pt 1):G810-7. PubMed ID: 1951700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA; Ryckman FC; Suchy FJ
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of bile acid transport in brush border membrane vesicles from rat ileum.
    Moyer MS; Heubi JE; Goodrich AL; Balistreri WF; Suchy FJ
    Gastroenterology; 1986 May; 90(5 Pt 1):1188-96. PubMed ID: 3956937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles.
    Simion FA; Fleischer B; Fleischer S
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):507-15. PubMed ID: 6537434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.