These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 17379316)

  • 1. Wavelet-based fractal features with active segment selection: application to single-trial EEG data.
    Hsu WY; Lin CC; Ju MS; Sun YN
    J Neurosci Methods; 2007 Jun; 163(1):145-60. PubMed ID: 17379316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier.
    Hsu WY
    Comput Biol Med; 2011 Aug; 41(8):633-9. PubMed ID: 21683346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced active segment selection for single-trial EEG classification.
    Hsu WY
    Clin EEG Neurosci; 2012 Apr; 43(2):87-96. PubMed ID: 22715494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BCI Competition 2003--Data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram.
    Bostanov V
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1057-61. PubMed ID: 15188878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The t-CWT: a new ERP detection and quantification method based on the continuous wavelet transform and Student's t-statistics.
    Bostanov V; Kotchoubey B
    Clin Neurophysiol; 2006 Dec; 117(12):2627-44. PubMed ID: 17030012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination.
    Hsu WY
    Int J Neural Syst; 2013 Apr; 23(2):1350007. PubMed ID: 23578057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous EEG signal analysis for asynchronous BCI application.
    Hsu WY
    Int J Neural Syst; 2011 Aug; 21(4):335-50. PubMed ID: 21809479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary optimization of classifiers and features for single-trial EEG discrimination.
    Aberg MC; Wessberg J
    Biomed Eng Online; 2007 Aug; 6():32. PubMed ID: 17716370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining spatial filters for the classification of single-trial EEG in a finger movement task.
    Liao X; Yao D; Wu D; Li C
    IEEE Trans Biomed Eng; 2007 May; 54(5):821-31. PubMed ID: 17518278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
    Güler I; Ubeyli ED
    J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis and research of brain-computer interface experiments for imaging left-right hands movement].
    Wu Y; He Q; Huang H; Zhang L; Zhuo Y; Xie Q; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):983-8. PubMed ID: 19024431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of competitive Hopfield neural network to brain-computer interface systems.
    Hsu WY
    Int J Neural Syst; 2012 Feb; 22(1):51-62. PubMed ID: 22262524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier.
    Boostani R; Moradi MH
    J Neural Eng; 2004 Dec; 1(4):212-7. PubMed ID: 15876641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.