BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17379365)

  • 1. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model.
    Maxted AP; Black CR; West HM; Crout NM; McGrath SP; Young SD
    Environ Pollut; 2007 Dec; 150(3):363-72. PubMed ID: 17379365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens.
    Yanai J; Zhao FJ; McGrath SP; Kosaki T
    Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction.
    Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL
    Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils.
    Martínez M; Bernal P; Almela C; Vélez D; García-Agustín P; Serrano R; Navarro-Aviñó J
    Chemosphere; 2006 Jun; 64(3):478-85. PubMed ID: 16337669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation.
    Catherine S; Christophe S; Louis MJ
    Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards practical cadmium phytoextraction with Noccaea caerulescens.
    Simmons RW; Chaney RL; Angle JS; Kruatrachue M; Klinphoklap S; Reeves RD; Bellamy P
    Int J Phytoremediation; 2015; 17(1-6):191-9. PubMed ID: 25360891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
    McGrath SP; Lombi E; Gray CW; Caille N; Dunham SJ; Zhao FJ
    Environ Pollut; 2006 May; 141(1):115-25. PubMed ID: 16202493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens.
    Monsant AC; Tang C; Baker AJ
    Chemosphere; 2008 Oct; 73(5):635-42. PubMed ID: 18752830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.
    Wong JW; Wong WW; Wei Z; Jagadeesan H
    Sci Total Environ; 2004 May; 324(1-3):235-46. PubMed ID: 15081709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time.
    Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B
    Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.
    Zaier H; Ghnaya T; Ben Rejeb K; Lakhdar A; Rejeb S; Jemal F
    Bioresour Technol; 2010 Jun; 101(11):3978-83. PubMed ID: 20129779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations.
    Basic N; Keller C; Fontanillas P; Vittoz P; Besnard G; Galland N
    Plant Biol (Stuttg); 2006 Jan; 8(1):64-72. PubMed ID: 16435270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique.
    Huynh TT; Laidlaw WS; Singh B; Gregory D; Baker AJ
    Environ Pollut; 2008 Dec; 156(3):874-82. PubMed ID: 18586368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chloride and co-contaminated zinc on cadmium accumulation within Thlaspi caerulescens and durum wheat.
    Liu Q; Tjoa A; Römheld V
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):62-5. PubMed ID: 17599229
    [No Abstract]   [Full Text] [Related]  

  • 18. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.
    Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE
    Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge.
    Egiarte G; Pinto M; Ruíz-Romera E; Camps Arbestain M
    Environ Pollut; 2008 Dec; 156(3):840-8. PubMed ID: 18602203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.