These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17379938)

  • 1. Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants.
    Schopfer P; Liszkay A
    Biofactors; 2006; 28(2):73-81. PubMed ID: 17379938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that hydroxyl radicals mediate auxin-induced extension growth.
    Schopfer P; Liszkay A; Bechtold M; Frahry G; Wagner A
    Planta; 2002 Apr; 214(6):821-8. PubMed ID: 11941457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth.
    Liszkay A; van der Zalm E; Schopfer P
    Plant Physiol; 2004 Oct; 136(2):3114-23; discussion 3001. PubMed ID: 15466236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth.
    Schopfer P
    Plant J; 2001 Dec; 28(6):679-88. PubMed ID: 11851914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.
    Heyno E; Mary V; Schopfer P; Krieger-Liszkay A
    Planta; 2011 Jul; 234(1):35-45. PubMed ID: 21359959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth.
    Liszkay A; Kenk B; Schopfer P
    Planta; 2003 Aug; 217(4):658-67. PubMed ID: 12739149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species in cell wall metabolism and development in plants.
    Kärkönen A; Kuchitsu K
    Phytochemistry; 2015 Apr; 112():22-32. PubMed ID: 25446232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide degradation by Fenton reaction--or peroxidase-generated hydroxyl radicals in isolated plant cell walls.
    Schweikert C; Liszkay A; Schopfer P
    Phytochemistry; 2002 Sep; 61(1):31-5. PubMed ID: 12165299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.
    Tian J; Cheng Y; Kong X; Liu M; Jiang F; Wu Z
    Protoplasma; 2017 Jan; 254(1):379-388. PubMed ID: 26945990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.
    Fry SC
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):507-15. PubMed ID: 9601081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scavenging of reactive oxygen species as the mechanism of drug action.
    Robak J; Marcinkiewicz E
    Pol J Pharmacol; 1995; 47(2):89-98. PubMed ID: 8688896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells.
    Demidchik V; Shabala SN; Coutts KB; Tester MA; Davies JM
    J Cell Sci; 2003 Jan; 116(Pt 1):81-8. PubMed ID: 12456718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Acid Growth Theory of auxin-induced cell elongation is alive and well.
    Rayle DL; Cleland RE
    Plant Physiol; 1992 Aug; 99(4):1271-4. PubMed ID: 11537886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses.
    Pottosin I; Velarde-Buendía AM; Bose J; Zepeda-Jazo I; Shabala S; Dobrovinskaya O
    J Exp Bot; 2014 Mar; 65(5):1271-83. PubMed ID: 24465010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants.
    Jambunathan N
    Methods Mol Biol; 2010; 639():292-8. PubMed ID: 20387054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall.
    Morina F; Jovanovic L; Mojovic M; Vidovic M; Pankovic D; Veljovic Jovanovic S
    Physiol Plant; 2010 Nov; 140(3):209-24. PubMed ID: 20626644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.