BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17380208)

  • 1. Intersectin links WNK kinases to endocytosis of ROMK1.
    He G; Wang HR; Huang SK; Huang CL
    J Clin Invest; 2007 Apr; 117(4):1078-87. PubMed ID: 17380208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
    Lazrak A; Liu Z; Huang CL
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1615-20. PubMed ID: 16428287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domains of WNK1 kinase in the regulation of ROMK1.
    Wang HR; Liu Z; Huang CL
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F438-45. PubMed ID: 18550644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of regulation of renal ion transport by WNK kinases.
    Huang CL; Yang SS; Lin SH
    Curr Opin Nephrol Hypertens; 2008 Sep; 17(5):519-25. PubMed ID: 18695394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase.
    Liu Z; Wang HR; Huang CL
    J Biol Chem; 2009 May; 284(18):12198-206. PubMed ID: 19244242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction.
    Ohta A; Schumacher FR; Mehellou Y; Johnson C; Knebel A; Macartney TJ; Wood NT; Alessi DR; Kurz T
    Biochem J; 2013 Apr; 451(1):111-22. PubMed ID: 23387299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4.
    Shibata S; Zhang J; Puthumana J; Stone KL; Lifton RP
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7838-43. PubMed ID: 23576762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice.
    Susa K; Sohara E; Rai T; Zeniya M; Mori Y; Mori T; Chiga M; Nomura N; Nishida H; Takahashi D; Isobe K; Inoue Y; Takeishi K; Takeda N; Sasaki S; Uchida S
    Hum Mol Genet; 2014 Oct; 23(19):5052-60. PubMed ID: 24821705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4.
    Cope G; Murthy M; Golbang AP; Hamad A; Liu CH; Cuthbert AW; O'Shaughnessy KM
    J Am Soc Nephrol; 2006 Jul; 17(7):1867-74. PubMed ID: 16775035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved.
    Golbang AP; Cope G; Hamad A; Murthy M; Liu CH; Cuthbert AW; O'shaughnessy KM
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1369-76. PubMed ID: 16788137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo.
    O'Reilly M; Marshall E; Macgillivray T; Mittal M; Xue W; Kenyon CJ; Brown RW
    J Am Soc Nephrol; 2006 Sep; 17(9):2402-13. PubMed ID: 16899520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases.
    Vitari AC; Deak M; Morrice NA; Alessi DR
    Biochem J; 2005 Oct; 391(Pt 1):17-24. PubMed ID: 16083423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1.
    Cheng CJ; Huang CL
    J Am Soc Nephrol; 2011 Mar; 22(3):460-71. PubMed ID: 21355052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
    Chávez-Canales M; Zhang C; Soukaseum C; Moreno E; Pacheco-Alvarez D; Vidal-Petiot E; Castañeda-Bueno M; Vázquez N; Rojas-Vega L; Meermeier NP; Rogers S; Jeunemaitre X; Yang CL; Ellison DH; Gamba G; Hadchouel J
    Hypertension; 2014 Nov; 64(5):1047-53. PubMed ID: 25113964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K
    Wu P; Gao ZX; Su XT; Ellison DH; Hadchouel J; Teulon J; Wang WH
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F223-F230. PubMed ID: 29667910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of WNK1 and implications for other family members.
    Lenertz LY; Lee BH; Min X; Xu BE; Wedin K; Earnest S; Goldsmith EJ; Cobb MH
    J Biol Chem; 2005 Jul; 280(29):26653-8. PubMed ID: 15883153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
    Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex.
    Yang CL; Zhu X; Ellison DH
    J Clin Invest; 2007 Nov; 117(11):3403-11. PubMed ID: 17975670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WNK kinases and the control of blood pressure.
    Cope G; Golbang A; O'Shaughnessy KM
    Pharmacol Ther; 2005 May; 106(2):221-31. PubMed ID: 15866321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.