These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17380312)

  • 1. Parallel avenues in the evolution of hearts and pumping organs.
    Xavier-Neto J; Castro RA; Sampaio AC; Azambuja AP; Castillo HA; Cravo RM; Simões-Costa MS
    Cell Mol Life Sci; 2007 Mar; 64(6):719-34. PubMed ID: 17380312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionary origin of cardiac chambers.
    Simões-Costa MS; Vasconcelos M; Sampaio AC; Cravo RM; Linhares VL; Hochgreb T; Yan CY; Davidson B; Xavier-Neto J
    Dev Biol; 2005 Jan; 277(1):1-15. PubMed ID: 15572135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development.
    Tanaka M; Kasahara H; Bartunkova S; Schinke M; Komuro I; Inagaki H; Lee Y; Lyons GE; Izumo S
    Dev Genet; 1998; 22(3):239-49. PubMed ID: 9621431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm.
    Lee KH; Xu Q; Breitbart RE
    Dev Biol; 1996 Dec; 180(2):722-31. PubMed ID: 8954740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological description, character conceptualization and the reconstruction of ancestral states exemplified by the evolution of arthropod hearts.
    Göpel T; Wirkner CS
    PLoS One; 2018; 13(9):e0201702. PubMed ID: 30235213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebrate tinman homologues and cardiac differentiation.
    Evans SM
    Semin Cell Dev Biol; 1999 Feb; 10(1):73-83. PubMed ID: 10355031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary treatment of the morphology and physiology of circulatory organs in insects.
    Hertel W; Pass G
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):555-75. PubMed ID: 12443914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new heart for a new head in vertebrate cardiopharyngeal evolution.
    Diogo R; Kelly RG; Christiaen L; Levine M; Ziermann JM; Molnar JL; Noden DM; Tzahor E
    Nature; 2015 Apr; 520(7548):466-73. PubMed ID: 25903628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman.
    Evans SM; Yan W; Murillo MP; Ponce J; Papalopulu N
    Development; 1995 Nov; 121(11):3889-99. PubMed ID: 8582297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site.
    Lien CL; McAnally J; Richardson JA; Olson EN
    Dev Biol; 2002 Apr; 244(2):257-66. PubMed ID: 11944935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessory pulsatile organs: evolutionary innovations in insects.
    Pass G
    Annu Rev Entomol; 2000; 45():495-518. PubMed ID: 10761587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the heart from bacteria to man.
    Bishopric NH
    Ann N Y Acad Sci; 2005 Jun; 1047():13-29. PubMed ID: 16093481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development.
    Tanaka M; Chen Z; Bartunkova S; Yamasaki N; Izumo S
    Development; 1999 Mar; 126(6):1269-80. PubMed ID: 10021345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty quantification reveals the physical constraints on pumping by peristaltic hearts.
    Waldrop LD; He Y; Battista NA; Neary Peterman T; Miller LA
    J R Soc Interface; 2020 Sep; 17(170):20200232. PubMed ID: 32900306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vertebrate heart: an evolutionary perspective.
    Stephenson A; Adams JW; Vaccarezza M
    J Anat; 2017 Dec; 231(6):787-797. PubMed ID: 28905992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia.
    Pascual-Anaya J; Albuixech-Crespo B; Somorjai IM; Carmona R; Oisi Y; Alvarez S; Kuratani S; Muñoz-Chápuli R; Garcia-Fernàndez J
    Dev Biol; 2013 Mar; 375(2):182-92. PubMed ID: 23201012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac septation in heart development and evolution.
    Katano W; Moriyama Y; Takeuchi JK; Koshiba-Takeuchi K
    Dev Growth Differ; 2019 Jan; 61(1):114-123. PubMed ID: 30549006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory networks in the evolution and development of the heart.
    Olson EN
    Science; 2006 Sep; 313(5795):1922-7. PubMed ID: 17008524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates.
    Zuckerkandl E
    J Mol Evol; 1994 Dec; 39(6):661-78. PubMed ID: 7807554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.