These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17380394)

  • 1. Linking pulmonary oxygen uptake, muscle oxygen utilization and cellular metabolism during exercise.
    Lai N; Camesasca M; Saidel GM; Dash RK; Cabrera ME
    Ann Biomed Eng; 2007 Jun; 35(6):956-69. PubMed ID: 17380394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles.
    Boone J; Vandekerckhove K; Coomans I; Prieur F; Bourgois JG
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2085-2102. PubMed ID: 27613650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control.
    Kim J; Saidel GM; Cabrera ME
    Ann Biomed Eng; 2007 Jan; 35(1):69-90. PubMed ID: 17111212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A validated model of oxygen uptake and circulatory dynamic interactions at exercise onset in humans.
    Benson AP; Grassi B; Rossiter HB
    J Appl Physiol (1985); 2013 Sep; 115(5):743-55. PubMed ID: 23766506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of muscle oxygen use, oxygen content, and blood flow during exercise.
    Kemp G
    J Appl Physiol (1985); 2005 Dec; 99(6):2463-8; author reply 2468-9. PubMed ID: 16288106
    [No Abstract]   [Full Text] [Related]  

  • 6. Relating pulmonary oxygen uptake to muscle oxygen consumption at exercise onset: in vivo and in silico studies.
    Lai N; Dash RK; Nasca MM; Saidel GM; Cabrera ME
    Eur J Appl Physiol; 2006 Jul; 97(4):380-94. PubMed ID: 16636861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Clinical exercise testing and the Fick equation: strategic thinking for optimizing diagnosis].
    Perrault H; Richard R
    Rev Mal Respir; 2012 Apr; 29(4):501-20. PubMed ID: 22542408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change.
    Wagner PD
    Eur J Appl Physiol; 2012 Jan; 112(1):1-8. PubMed ID: 21512800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of inspired oxygen fraction on peak oxygen uptake during arm exercise.
    Hopman MT; Folgering HT; Groothuis JT; Houtman S
    Eur J Appl Physiol; 2003 Sep; 90(1-2):120-4. PubMed ID: 12827365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The body as a bioenergetic system--lessons from systems engineering and comparative physiology.
    Linnarsson D
    Med Sci Sports Exerc; 1990 Feb; 22(1):59-61. PubMed ID: 2304409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle oxygen uptake differs from consumption dynamics during transients in exercise.
    Lai N; Syed N; Saidel GM; Cabrera ME
    Adv Exp Med Biol; 2008; 614():325-32. PubMed ID: 18290343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale model of O2 transport and metabolism: response to exercise.
    Zhou H; Lai N; Saidel GM; Cabrera ME
    Ann N Y Acad Sci; 2008 Mar; 1123():178-86. PubMed ID: 18375590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The low intracellular oxygen tension during exercise is a function of limited oxygen supply and high mitochondrial oxygen affinity.
    Larsen FJ; Ekblom B
    Eur J Appl Physiol; 2012 Nov; 112(11):3935-6; author reply 3937-8. PubMed ID: 22446957
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of "priming" exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions.
    Jones AM; Berger NJ; Wilkerson DP; Roberts CL
    J Appl Physiol (1985); 2006 Nov; 101(5):1432-41. PubMed ID: 16857860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates.
    Williams AM; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring cardiorespiratory control mechanisms through gas exchange dynamics.
    Hughson RL
    Med Sci Sports Exerc; 1990 Feb; 22(1):72-9. PubMed ID: 2406548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point: the kinetics of oxygen uptake during muscular exercise do manifest time-delayed phases.
    Whipp BJ
    J Appl Physiol (1985); 2009 Nov; 107(5):1663-5. PubMed ID: 19228993
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of factors determining oxygen uptake at the onset of exercise.
    Tschakovsky ME; Hughson RL
    J Appl Physiol (1985); 1999 Apr; 86(4):1101-13. PubMed ID: 10194190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterpoint: the kinetics of oxygen uptake during muscular exercise do not manifest time-delayed phases.
    Stirling JR; Zakynthinaki M
    J Appl Physiol (1985); 2009 Nov; 107(5):1665-7; discussion 1667-8. PubMed ID: 19890030
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.