These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 1738047)

  • 1. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1992 Jan; 9(1):154-66. PubMed ID: 1738047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common aberration with water-immersion objective lenses.
    Arimoto R; Murray JM
    J Microsc; 2004 Oct; 216(Pt 1):49-51. PubMed ID: 15369482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40.
    Wan DS; Rajadhyaksha M; Webb RH
    J Microsc; 2000 Mar; 197(Pt 3):274-84. PubMed ID: 10692131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental imaging properties of immersion microscale spherical lenses.
    Ye R; Ye YH; Ma HF; Cao L; Ma J; Wyrowski F; Shi R; Zhang JY
    Sci Rep; 2014 Jan; 4():3769. PubMed ID: 24442126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging.
    Chen WT; Zhu AY; Khorasaninejad M; Shi Z; Sanjeev V; Capasso F
    Nano Lett; 2017 May; 17(5):3188-3194. PubMed ID: 28388086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy.
    Nasse MJ; Woehl JC
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):295-302. PubMed ID: 20126241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of optical geometries for combined flash photolysis and total internal reflection fluorescence microscopy.
    Conibear PB; Bagshaw CR
    J Microsc; 2000 Dec; 200(Pt 3):218-29. PubMed ID: 11106962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable immersion microscopy with a high numerical aperture.
    Ishida K; Naruse K; Mizouchi Y; Ogawa Y; Matsushita M; Shimi T; Kimura H; Fujiyoshi S
    Opt Lett; 2021 Feb; 46(4):856-859. PubMed ID: 33577531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch.
    Kuypers LC; Decraemer WF; Dirckx JJ; Timmermans JP
    J Microsc; 2005 Apr; 218(Pt 1):68-78. PubMed ID: 15817065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Aberration Correction with Adaptive Coefficient SPGD Algorithm for Laser Scanning Confocal Microscope.
    Zhou K; Wu Z; Zhang T; Li F; Iqbal A; Sivanandam S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated spherical aberration correction in scanning confocal microscopy.
    Yoo HW; van Royen ME; van Cappellen WA; Houtsmuller AB; Verhaegen M; Schitter G
    Rev Sci Instrum; 2014 Dec; 85(12):123706. PubMed ID: 25554300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing.
    Kner P; Sedat JW; Agard DA; Kam Z
    J Microsc; 2010 Feb; 237(2):136-47. PubMed ID: 20096044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy.
    Hiraoka Y; Sedat JW; Agard DA
    Biophys J; 1990 Feb; 57(2):325-33. PubMed ID: 2317554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy.
    Preza C; Conchello JA
    J Opt Soc Am A Opt Image Sci Vis; 2004 Sep; 21(9):1593-601. PubMed ID: 15384425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberration reduction and unique light focusing in a photonic crystal negative refractive lens.
    Asatsuma T; Baba T
    Opt Express; 2008 Jun; 16(12):8711-9. PubMed ID: 18545584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.