BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 1738097)

  • 21. [Proteases from the enterocytes of the porcine small intestine. Role of aminopeptidase N in the transport of dipeptides].
    Vorotyntseva TI; Bessmertnaia LIa; Zil'berman MI; Mikhaĭlova AG; Antonov VK
    Biokhimiia; 1984 Nov; 49(11):1854-61. PubMed ID: 6525363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of transport characteristics of amino beta-lactam antibiotics and dipeptides across rat intestinal brush border membrane.
    Iseki K; Sugawara M; Saitoh H; Miyazaki K; Arita T
    J Pharm Pharmacol; 1989 Sep; 41(9):628-32. PubMed ID: 2573708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine.
    Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T
    Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit.
    Ganapathy V; Mendicino JF; Leibach FH
    J Biol Chem; 1981 Jan; 256(1):118-24. PubMed ID: 7451429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of dipeptide transport in rat renal brush border membranes: studies with glycylsarcosine.
    Tiruppathi C; Ganapathy V; Leibach FH
    Pediatr Res; 1987 Dec; 22(6):641-6. PubMed ID: 2829104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of cefadroxil derivatives in rat intestinal brush-border membrane vesicles.
    Wang HP; Bair CH; Huang JD
    J Pharm Pharmacol; 1992 Dec; 44(12):1027-9. PubMed ID: 1361551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2.
    Saito H; Inui K
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G289-94. PubMed ID: 8396335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution and properties of the glycylsarcosine-transport system in rabbit renal proximal tubule. Studies with isolated brush-border-membrane vesicles.
    Miyamoto Y; Coone JL; Ganapathy V; Leibach FH
    Biochem J; 1988 Jan; 249(1):247-53. PubMed ID: 3342009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat.
    Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y
    J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Transport of the hydroxy analogs of leucine in the brush border membrane vesicles of the rabbit small intestine].
    Friedrich M; Murer H; Berger EG
    Z Ernahrungswiss; 1991 Sep; 30(3):233-7. PubMed ID: 1763560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles.
    Inui K; Okano T; Takano M; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):449-54. PubMed ID: 6696892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of guanidine in rabbit intestinal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Am J Physiol; 1988 Jul; 255(1 Pt 1):G85-92. PubMed ID: 2839044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dipeptide transport in isolated intestinal brush border membrane.
    Sigrist-Nelson K
    Biochim Biophys Acta; 1975 Jun; 394(2):220-6. PubMed ID: 1138931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport characteristics of ceftibuten, a new oral cephem, in rat intestinal brush-border membrane vesicles: relationship to oligopeptide and amino beta-lactam transport.
    Muranushi N; Yoshikawa T; Yoshida M; Oguma T; Hirano K; Yamada H
    Pharm Res; 1989 Apr; 6(4):308-12. PubMed ID: 2748518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of uptake of cefroxadine by rabbit small intestinal brush border membrane vesicles.
    Kitagawa S; Sugaya Y
    Biol Pharm Bull; 1996 Feb; 19(2):268-73. PubMed ID: 8850320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of procainamide via H(+)/tertiary amine antiport system in rabbit intestinal brush-border membrane.
    Katsura T; Mizuuchi H; Hashimoto Y; Inui KI
    Am J Physiol Gastrointest Liver Physiol; 2000 Oct; 279(4):G799-805. PubMed ID: 11005768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterisation of penicillin-G uptake in rabbit small-intestinal brush-border membrane vesicles.
    Poschet JF; Hammond SM; Fairclough PD
    Biochim Biophys Acta; 1996 Jan; 1278(2):233-40. PubMed ID: 8593281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.