These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 17381166)
1. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166 [TBL] [Abstract][Full Text] [Related]
3. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012 [TBL] [Abstract][Full Text] [Related]
4. Similarity metrics for ligands reflecting the similarity of the target proteins. Schuffenhauer A; Floersheim P; Acklin P; Jacoby E J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501 [TBL] [Abstract][Full Text] [Related]
5. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores. Barillari C; Marcou G; Rognan D J Chem Inf Model; 2008 Jul; 48(7):1396-410. PubMed ID: 18570371 [TBL] [Abstract][Full Text] [Related]
7. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation. Cross S; Baroni M; Goracci L; Cruciani G J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894 [TBL] [Abstract][Full Text] [Related]
8. Computational identification of proteins for selectivity assays. Yoon S; Smellie A; Hartsough D; Filikov A Proteins; 2005 May; 59(3):434-43. PubMed ID: 15770646 [TBL] [Abstract][Full Text] [Related]
9. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. Renner S; Schwab CH; Gasteiger J; Schneider G J Chem Inf Model; 2006; 46(6):2324-32. PubMed ID: 17125176 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional protein-ligand interaction scaling of two-dimensional fingerprints. Tan L; Vogt M; Bajorath J Chem Biol Drug Des; 2009 Nov; 74(5):449-56. PubMed ID: 19793181 [TBL] [Abstract][Full Text] [Related]
11. Multiple-ligand-based virtual screening: methods and applications of the MTree approach. Hessler G; Zimmermann M; Matter H; Evers A; Naumann T; Lengauer T; Rarey M J Med Chem; 2005 Oct; 48(21):6575-84. PubMed ID: 16220974 [TBL] [Abstract][Full Text] [Related]
12. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening. Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058 [TBL] [Abstract][Full Text] [Related]
13. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases. Floriano WB; Vaidehi N; Zamanakos G; Goddard WA J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820 [TBL] [Abstract][Full Text] [Related]
14. Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials. Hoppe C; Steinbeck C; Wohlfahrt G J Mol Graph Model; 2006 Mar; 24(5):328-40. PubMed ID: 16260161 [TBL] [Abstract][Full Text] [Related]
15. Biologically enhanced sampling geometric docking and backbone flexibility treatment with multiconformational superposition. Ma XH; Li CH; Shen LZ; Gong XQ; Chen WZ; Wang CX Proteins; 2005 Aug; 60(2):319-23. PubMed ID: 15981260 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive docking study on the selectivity of binding of aromatic compounds to proteins. Hetényi C; Maran U; Karelson M J Chem Inf Comput Sci; 2003; 43(5):1576-83. PubMed ID: 14502492 [TBL] [Abstract][Full Text] [Related]