BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17381168)

  • 1. Estimation of pKa for druglike compounds using semiempirical and information-based descriptors.
    Jelfs S; Ertl P; Selzer P
    J Chem Inf Model; 2007; 47(2):450-9. PubMed ID: 17381168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors.
    Zhang J; Kleinöder T; Gasteiger J
    J Chem Inf Model; 2006; 46(6):2256-66. PubMed ID: 17125168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting pK(a) by molecular tree structured fingerprints and PLS.
    Xing L; Glen RC; Clark RD
    J Chem Inf Comput Sci; 2003; 43(3):870-9. PubMed ID: 12767145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New and original pKa prediction method using grid molecular interaction fields.
    Milletti F; Storchi L; Sforna G; Cruciani G
    J Chem Inf Model; 2007; 47(6):2172-81. PubMed ID: 17910431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of ionization constants of drugs.
    Lee PH; Ayyampalayam SN; Carreira LA; Shalaeva M; Bhattachar S; Coselmon R; Poole S; Gifford E; Lombardo F
    Mol Pharm; 2007; 4(4):498-512. PubMed ID: 17629304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors.
    Modarresi H; Dearden JC; Modarress H
    J Chem Inf Model; 2006; 46(2):930-6. PubMed ID: 16563024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations and predictions of carboxylic acid pKa values using intermolecular structure and properties of hydrogen-bonded complexes.
    Tao L; Han J; Tao FM
    J Phys Chem A; 2008 Jan; 112(4):775-82. PubMed ID: 18179190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reliable and efficient first principles-based method for predicting pKa values. 4. Organic bases.
    Zhang S
    J Comput Chem; 2012 Dec; 33(31):2469-82. PubMed ID: 22847489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pK(a) prediction from "Quantum Chemical Topology" descriptors.
    Harding AP; Wedge DC; Popelier PL
    J Chem Inf Model; 2009 Aug; 49(8):1914-24. PubMed ID: 19630371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of pH-dependent aqueous solubility of druglike molecules.
    Hansen NT; Kouskoumvekaki I; Jørgensen FS; Brunak S; Jónsdóttir SO
    J Chem Inf Model; 2006; 46(6):2601-9. PubMed ID: 17125200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols.
    Chaudry UA; Popelier PL
    J Org Chem; 2004 Jan; 69(2):233-41. PubMed ID: 14725434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of reliable aqueous solubility models and their application in druglike analysis.
    Wang J; Krudy G; Hou T; Zhang W; Holland G; Xu X
    J Chem Inf Model; 2007; 47(4):1395-404. PubMed ID: 17569522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods.
    Hudelson MG; Ketkar NS; Holder LB; Carlson TJ; Peng CC; Waldher BJ; Jones JP
    J Med Chem; 2008 Feb; 51(3):648-54. PubMed ID: 18211009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.
    Bonachéra F; Parent B; Barbosa F; Froloff N; Horvath D
    J Chem Inf Model; 2006; 46(6):2457-77. PubMed ID: 17125187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model for the prediction of aqueous solubility that includes crystal packing, intrinsic solubility, and ionization effects.
    Johnson SR; Chen XQ; Murphy D; Gudmundsson O
    Mol Pharm; 2007; 4(4):513-23. PubMed ID: 17539661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing.
    Sun H
    J Med Chem; 2005 Jun; 48(12):4031-9. PubMed ID: 15943476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and decomposition of an ester derivative of the procarcinogen and promutagen, PhIP, 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine: unusual nitrenium ion chemistry.
    Nguyen TM; Novak M
    J Org Chem; 2007 Jun; 72(13):4698-706. PubMed ID: 17542636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems.
    Crivori P; Morelli A; Pezzetta D; Rocchetti M; Poggesi I
    Eur J Pharm Sci; 2007 Nov; 32(3):169-81. PubMed ID: 17714921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient and convenient synthesis of ethyl 1-(4-methoxyphenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate.
    Chen JH; Liu SR; Chen K
    Chem Asian J; 2010 Feb; 5(2):328-33. PubMed ID: 20029887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico pKa prediction and ADME profiling.
    Cruciani G; Milletti F; Storchi L; Sforna G; Goracci L
    Chem Biodivers; 2009 Nov; 6(11):1812-21. PubMed ID: 19937818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.