These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17381197)

  • 41. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential.
    Yu YX; Tian AW; Gao GH
    Phys Chem Chem Phys; 2005 Jun; 7(12):2423-8. PubMed ID: 15962025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes in aqueous solutions.
    Hu Y; Cao D
    Langmuir; 2009 May; 25(9):4965-72. PubMed ID: 19323501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate).
    Chen C; Depa P; Maranas JK; Garcia Sakai V
    J Chem Phys; 2008 Mar; 128(12):124906. PubMed ID: 18376972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A coarse-graining procedure for polymer melts applied to 1,4-polybutadiene.
    Strauch T; Yelash L; Paul W
    Phys Chem Chem Phys; 2009 Mar; 11(12):1942-8. PubMed ID: 19280005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical reconstruction of realistic dynamics of highly coarse-grained cis-1,4-polybutadiene melts.
    Lyubimov IY; Guenza MG
    J Chem Phys; 2013 Mar; 138(12):12A546. PubMed ID: 23556797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.
    Fu CC; Kulkarni PM; Shell MS; Leal LG
    J Chem Phys; 2013 Sep; 139(9):094107. PubMed ID: 24028102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.
    Español P; Donev A
    J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coarse grained model of entangled polymer melts.
    Rakshit A; Picu RC
    J Chem Phys; 2006 Oct; 125(16):164907. PubMed ID: 17092139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles.
    Hong B; Chremos A; Panagiotopoulos AZ
    J Chem Phys; 2012 May; 136(20):204904. PubMed ID: 22667588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coarse-grained kinetic computations for rare events: application to micelle formation.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44908. PubMed ID: 15740299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: a bottom-up approach.
    Trément S; Schnell B; Petitjean L; Couty M; Rousseau B
    J Chem Phys; 2014 Apr; 140(13):134113. PubMed ID: 24712786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoparticle interaction potentials constructed by multiscale computation.
    Lee CK; Hua CC
    J Chem Phys; 2010 Jun; 132(22):224904. PubMed ID: 20550416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation.
    Izvekov S; Violi A
    J Chem Theory Comput; 2006 May; 2(3):504-12. PubMed ID: 26626661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coarse-graining: a procedure to generate equilibrated and relaxed models of amorphous polymers.
    Curcó D; Alemán C
    J Comput Chem; 2007 Sep; 28(12):1929-35. PubMed ID: 17450565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel algorithm for creating coarse-grained, density dependent implicit solvent models.
    Allen EC; Rutledge GC
    J Chem Phys; 2008 Apr; 128(15):154115. PubMed ID: 18433198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybrid atomistic-coarse-grained treatment of multiscale processes in heterogeneous materials: a self-consistent-field approach.
    Diestler DJ; Zhou H; Feng R; Zeng XC
    J Chem Phys; 2006 Aug; 125(6):64705. PubMed ID: 16942303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coarse-graining intermolecular interactions in dispersions of highly charged colloids.
    Turesson M; Jönsson B; Labbez C
    Langmuir; 2012 Mar; 28(11):4926-30. PubMed ID: 22404737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte.
    Guerrero-García GI; González-Mozuelos P; Olvera de la Cruz M
    J Chem Phys; 2011 Oct; 135(16):164705. PubMed ID: 22047261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular dynamics simulation of nanocolloidal amorphous silica particles: Part I.
    Jenkins S; Kirk SR; Persson M; Carlen J; Abbas Z
    J Chem Phys; 2007 Dec; 127(22):224711. PubMed ID: 18081418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coarse-grained nonequilibrium approach to the molecular modeling of permeation through microporous membranes.
    Tunca C; Ford DM
    J Chem Phys; 2004 Jun; 120(22):10763-7. PubMed ID: 15268102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.