These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17381219)

  • 1. Bubble formation in lattice Boltzmann immiscible shear flow.
    Qin RS
    J Chem Phys; 2007 Mar; 126(11):114506. PubMed ID: 17381219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence of bubbles translating through a tube.
    Almatroushi E; Borhan A
    Ann N Y Acad Sci; 2006 Sep; 1077():508-26. PubMed ID: 17124143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Fine Bubble Attachment onto a Solid Surface within the Framework of Classical DLVO Theory.
    Yang C; Dabros T; Li D; Czarnecki J; Masliyah JH
    J Colloid Interface Sci; 1999 Nov; 219(1):69-80. PubMed ID: 10527573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores.
    Unsal E; Mason G; Morrow NR; Ruth DW
    Langmuir; 2009 Apr; 25(6):3387-95. PubMed ID: 19228030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice-Boltzmann simulation of coalescence-driven island coarsening.
    Başağaoğlu H; Green CT; Meakin P; McCoy BJ
    J Chem Phys; 2004 Oct; 121(16):7987-95. PubMed ID: 15485261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble coalescence during acoustic cavitation in aqueous electrolyte solutions.
    Browne C; Tabor RF; Chan DY; Dagastine RR; Ashokkumar M; Grieser F
    Langmuir; 2011 Oct; 27(19):12025-32. PubMed ID: 21866892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel.
    van der Graaf S; Nisisako T; Schroën CG; van der Sman RG; Boom RM
    Langmuir; 2006 Apr; 22(9):4144-52. PubMed ID: 16618157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann scheme for crystal growth in external flows.
    Medvedev D; Kassner K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056703. PubMed ID: 16383781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives.
    Sunartio D; Ashokkumar M; Grieser F
    J Am Chem Soc; 2007 May; 129(18):6031-6. PubMed ID: 17439213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of bubble formation in highly viscous liquids.
    Pancholi K; Stride E; Edirisinghe M
    Langmuir; 2008 Apr; 24(8):4388-93. PubMed ID: 18331069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear.
    Harting J; Venturoli M; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1703-22. PubMed ID: 15306441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of very small bubbles on particle/bubble heterocoagulation.
    Mishchuk N; Ralston J; Fornasiero D
    J Colloid Interface Sci; 2006 Sep; 301(1):168-75. PubMed ID: 16725149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corner-transport-upwind lattice Boltzmann model for bubble cavitation.
    Sofonea V; Biciuşcă T; Busuioc S; Ambruş VE; Gonnella G; Lamura A
    Phys Rev E; 2018 Feb; 97(2-1):023309. PubMed ID: 29548242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble population phenomena in sonochemical reactor: II. Estimation of bubble size distribution and its number density by simple coalescence model calculation.
    Iida Y; Ashokkumar M; Tuziuti T; Kozuka T; Yasui K; Towata A; Lee J
    Ultrason Sonochem; 2010 Feb; 17(2):480-6. PubMed ID: 19819749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble formation on a submerged micronozzle.
    Vafaei S; Wen D
    J Colloid Interface Sci; 2010 Mar; 343(1):291-7. PubMed ID: 20038468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann simulations of bubble formation in a microfluidic T-junction.
    Amaya-Bower L; Lee T
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2405-13. PubMed ID: 21576154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bubble shapes and orientations in low Re simple shear flow.
    Rust AC; Manga M
    J Colloid Interface Sci; 2002 May; 249(2):476-80. PubMed ID: 16290624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall.
    Kasumi H; Solomentsev YE; Guelcher SA; Anderson JL; Sides PJ
    J Colloid Interface Sci; 2000 Dec; 232(1):111-120. PubMed ID: 11071739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions.
    Harting J; Giupponi G; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041504. PubMed ID: 17500899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary coalescence of gas bubbles in the presence of a non-ionic surfactant.
    Duerr-Auster N; Gunde R; Mäder R; Windhab EJ
    J Colloid Interface Sci; 2009 May; 333(2):579-84. PubMed ID: 19200557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.