These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17382457)

  • 1. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative second virial coefficients as predictors of protein crystal growth: evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients.
    Deszczynski M; Harding SE; Winzor DJ
    Biophys Chem; 2006 Mar; 120(2):106-13. PubMed ID: 16300875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of thermodynamic non-ideality in sedimentation equilibrium experiments on proteins.
    Wills PR; Hall DR; Winzor DJ
    Biophys Chem; 2000 May; 84(3):217-25. PubMed ID: 10852309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering.
    Scott DJ; Patel TR; Winzor DJ
    Anal Biochem; 2013 Apr; 435(2):159-65. PubMed ID: 23313340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments.
    Behlke J; Ristau O
    Biophys Chem; 1999 Jan; 76(1):13-23. PubMed ID: 10028229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental support for reclassification of the light scattering second virial coefficient from macromolecular solutions as a hydrodynamic parameter.
    Winzor DJ; Dinu V; Scott DJ; Harding SE
    Eur Biophys J; 2023 Jul; 52(4-5):343-352. PubMed ID: 37460663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic nonideality in macromolecular solutions: interpretation of virial coefficients.
    Wills PR; Comper WD; Winzor DJ
    Arch Biochem Biophys; 1993 Jan; 300(1):206-12. PubMed ID: 8424654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules.
    Bonneté F; Vivarès D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1571-5. PubMed ID: 12351864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigorous analysis of static light scattering measurements on buffered protein solutions.
    Wills PR; Winzor DJ
    Biophys Chem; 2017 Sep; 228():108-113. PubMed ID: 28754409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental determination of second virial coefficients by small-angle X-ray scattering: a problem revisited.
    Mrozowich T; Winzor DJ; Scott DJ; Patel TR
    Eur Biophys J; 2019 Dec; 48(8):781-787. PubMed ID: 31667558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.
    Herhut M; Brandenbusch C; Sadowski G
    Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the second osmotic virial coefficient for protein solutions exhibiting monomer-dimer equilibrium.
    Alford JR; Kendrick BS; Carpenter JF; Randolph TW
    Anal Biochem; 2008 Jun; 377(2):128-33. PubMed ID: 18395000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Protein-Protein Interactions at High Co-Solvent Concentrations Using Static and Dynamic Light Scattering.
    Holloway L; Roche A; Marzouk S; Uddin S; Ke P; Ekizoglou S; Curtis R
    J Pharm Sci; 2020 Sep; 109(9):2699-2709. PubMed ID: 32505449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic virial coefficients for model protein and colloidal solutions: importance of ensemble constraints in the analysis of light scattering data.
    Siderius DW; Krekelberg WP; Roberts CJ; Shen VK
    J Chem Phys; 2012 May; 136(17):175102. PubMed ID: 22583267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-Based Description of the Osmotic Second Virial Coefficients of Electrolytes: Rigorous Formal Links to Solute-Solvent Interaction Asymmetry, Virial Expansion Paths, and Experimental Evidence.
    Chialvo AA
    J Phys Chem B; 2022 Jun; ():. PubMed ID: 35671130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the discrepancy between size estimates for ovalbumin from small-angle X-ray scattering and other physicochemical measurements.
    Scott DJ; Patel TR; Besong DM; Stetefeld J; Winzor DJ
    J Phys Chem B; 2011 Sep; 115(36):10725-9. PubMed ID: 21793570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Reappraisal of Sedimentation Nonideality Coefficients for the Analysis of Weak Interactions of Therapeutic Proteins.
    Chaturvedi SK; Schuck P
    AAPS J; 2019 Feb; 21(3):35. PubMed ID: 30815745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hilly path through the thermodynamics and statistical mechanics of protein solutions.
    Wills PR
    Biophys Rev; 2016 Dec; 8(4):291-298. PubMed ID: 28510018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen.
    Velev OD; Kaler EW; Lenhoff AM
    Biophys J; 1998 Dec; 75(6):2682-97. PubMed ID: 9826592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.