BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 17382606)

  • 21. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks.
    Herzberg K; Bashkirov VI; Rolfsmeier M; Haghnazari E; McDonald WH; Anderson S; Bashkirova EV; Yates JR; Heyer WD
    Mol Cell Biol; 2006 Nov; 26(22):8396-409. PubMed ID: 16966380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in understanding DNA processing and protection at stalled replication forks.
    Rickman K; Smogorzewska A
    J Cell Biol; 2019 Apr; 218(4):1096-1107. PubMed ID: 30670471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signaling pathways of replication stress in yeast.
    Pardo B; Crabbé L; Pasero P
    FEMS Yeast Res; 2017 Mar; 17(2):. PubMed ID: 27915243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis.
    Kai M; Wang TS
    Mutat Res; 2003 Nov; 532(1-2):59-73. PubMed ID: 14643429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATR/Mec1: coordinating fork stability and repair.
    Friedel AM; Pike BL; Gasser SM
    Curr Opin Cell Biol; 2009 Apr; 21(2):237-44. PubMed ID: 19230642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.
    Colosio A; Frattini C; Pellicanò G; Villa-Hernández S; Bermejo R
    Nucleic Acids Res; 2016 Dec; 44(22):10676-10690. PubMed ID: 27672038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular anatomy of the DNA damage and replication checkpoints.
    Qin J; Li L
    Radiat Res; 2003 Feb; 159(2):139-48. PubMed ID: 12537518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The DNA damage response during DNA replication.
    Branzei D; Foiani M
    Curr Opin Cell Biol; 2005 Dec; 17(6):568-75. PubMed ID: 16226452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling.
    Sasi NK; Coquel F; Lin YL; MacKeigan JP; Pasero P; Weinreich M
    Neoplasia; 2018 Oct; 20(10):985-995. PubMed ID: 30157471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication fork dynamics and the DNA damage response.
    Jones RM; Petermann E
    Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks.
    Robison JG; Elliott J; Dixon K; Oakley GG
    J Biol Chem; 2004 Aug; 279(33):34802-10. PubMed ID: 15180989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintaining genome stability at the replication fork.
    Branzei D; Foiani M
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A DNA replication fork-centric view of the budding yeast DNA damage response.
    McClure AW; Canal B; Diffley JFX
    DNA Repair (Amst); 2022 Nov; 119():103393. PubMed ID: 36108423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TopBP1 and DNA polymerase alpha-mediated recruitment of the 9-1-1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation.
    Yan S; Michael WM
    Cell Cycle; 2009 Sep; 8(18):2877-84. PubMed ID: 19652550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
    Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM
    Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D.
    Lu X; Parvathaneni S; Hara T; Lal A; Sharma S
    Mol Cancer; 2013 Apr; 12(1):29. PubMed ID: 23601052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair.
    Ying S; Chen Z; Medhurst AL; Neal JA; Bao Z; Mortusewicz O; McGouran J; Song X; Shen H; Hamdy FC; Kessler BM; Meek K; Helleday T
    Cancer Res; 2016 Mar; 76(5):1078-88. PubMed ID: 26603896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.