These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 17382888)
1. Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Shimizu K; Phan T; Mansuy IM; Storm DR Cell; 2007 Mar; 128(6):1219-29. PubMed ID: 17382888 [TBL] [Abstract][Full Text] [Related]
2. SCOPing out proteases in long-term memory. Bolshakov VY Cell; 2007 Mar; 128(6):1029-30. PubMed ID: 17382874 [TBL] [Abstract][Full Text] [Related]
3. Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. Sala C; Rudolph-Correia S; Sheng M J Neurosci; 2000 May; 20(10):3529-36. PubMed ID: 10804193 [TBL] [Abstract][Full Text] [Related]
4. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Liu Y; Wang Y; Zhu G; Sun J; Bi X; Baudry M Neuropharmacology; 2016 Jun; 105():471-477. PubMed ID: 26907807 [TBL] [Abstract][Full Text] [Related]
5. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. Shimizu K; Okada M; Nagai K; Fukada Y J Biol Chem; 2003 Apr; 278(17):14920-5. PubMed ID: 12594205 [TBL] [Abstract][Full Text] [Related]
6. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. Zadran S; Jourdi H; Rostamiani K; Qin Q; Bi X; Baudry M J Neurosci; 2010 Jan; 30(3):1086-95. PubMed ID: 20089917 [TBL] [Abstract][Full Text] [Related]
7. A molecular brake controls the magnitude of long-term potentiation. Wang Y; Zhu G; Briz V; Hsu YT; Bi X; Baudry M Nat Commun; 2014; 5():3051. PubMed ID: 24394804 [TBL] [Abstract][Full Text] [Related]
8. SCOP/PHLPP and its functional role in the brain. Shimizu K; Mackenzie SM; Storm DR Mol Biosyst; 2010 Jan; 6(1):38-43. PubMed ID: 20024065 [TBL] [Abstract][Full Text] [Related]
9. Modulation of hippocampal calcium signalling and plasticity by serine/threonine protein phosphatases. Koss DJ; Hindley KP; Riedel G; Platt B J Neurochem; 2007 Aug; 102(4):1009-23. PubMed ID: 17442047 [TBL] [Abstract][Full Text] [Related]
10. Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Jeon SJ; Rhee SY; Seo JE; Bak HR; Lee SH; Ryu JH; Cheong JH; Shin CY; Kim GH; Lee YS; Ko KH Neurosci Res; 2011 Mar; 69(3):214-22. PubMed ID: 21145362 [TBL] [Abstract][Full Text] [Related]
11. Acute Physiology and Neurologic Outcomes after Brain Injury in SCOP/PHLPP1 KO Mice. Jackson TC; Dixon CE; Janesko-Feldman K; Vagni V; Kotermanski SE; Jackson EK; Kochanek PM Sci Rep; 2018 May; 8(1):7158. PubMed ID: 29739983 [TBL] [Abstract][Full Text] [Related]
12. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus. Song Z; Shen F; Zhang Z; Wu S; Zhu G Neuropharmacology; 2020 Sep; 174():108175. PubMed ID: 32492450 [TBL] [Abstract][Full Text] [Related]
13. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo. Chimura T; Launey T; Yoshida N PLoS One; 2015; 10(4):e0125119. PubMed ID: 25905636 [TBL] [Abstract][Full Text] [Related]
14. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Iki J; Inoue A; Bito H; Okabe S Eur J Neurosci; 2005 Dec; 22(12):2985-94. PubMed ID: 16367765 [TBL] [Abstract][Full Text] [Related]
15. NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. Banko JL; Hou L; Klann E J Neurochem; 2004 Oct; 91(2):462-70. PubMed ID: 15447679 [TBL] [Abstract][Full Text] [Related]
16. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons. Lin CH; Chen CC; Chou CM; Wang CY; Hung CC; Chen JY; Chang HW; Chen YC; Yeh GC; Lee YH J Neurochem; 2009 Nov; 111(3):777-89. PubMed ID: 19712055 [TBL] [Abstract][Full Text] [Related]
17. Strain-dependent regulation of plasticity-related proteins in the mouse hippocampus. Pollak DD; Scharl T; Leisch F; Herkner K; Villar SR; Hoeger H; Lubec G Behav Brain Res; 2005 Dec; 165(2):240-6. PubMed ID: 16162363 [TBL] [Abstract][Full Text] [Related]
18. 17-Beta-estradiol increases neuronal excitability through MAP kinase-induced calpain activation. Zadran S; Qin Q; Bi X; Zadran H; Kim Y; Foy MR; Thompson R; Baudry M Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21936-41. PubMed ID: 19995977 [TBL] [Abstract][Full Text] [Related]
19. Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling. Nadei OV; Khvorova IA; Agalakova NI Biol Trace Elem Res; 2020 Oct; 197(2):495-506. PubMed ID: 31797207 [TBL] [Abstract][Full Text] [Related]
20. KCl and forskolin synergistically up-regulate cholecystokinin gene expression via coordinate activation of CREB and the co-activator CBP. Hansen TV; Rehfeld JF; Nielsen FC J Neurochem; 2004 Apr; 89(1):15-23. PubMed ID: 15030385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]