These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17383093)
1. Interaction of uranium with in situ anoxically generated magnetite on steel. Rovira M; El Aamrani S; Duro L; Giménez J; de Pablo J; Bruno J J Hazard Mater; 2007 Aug; 147(3):726-31. PubMed ID: 17383093 [TBL] [Abstract][Full Text] [Related]
2. Influence of magnetite stoichiometry on U(VI) reduction. Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359 [TBL] [Abstract][Full Text] [Related]
3. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Crane RA; Dickinson M; Popescu IC; Scott TB Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652 [TBL] [Abstract][Full Text] [Related]
4. Factors influencing the reduction of U(VI) by magnetite. Ma Y; Cheng X; Kang M; Yang G; Yin M; Wang J; Gang S Chemosphere; 2020 Sep; 254():126855. PubMed ID: 32361538 [TBL] [Abstract][Full Text] [Related]
5. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout. Stitt CA; Hart M; Harker NJ; Hallam KR; MacFarlane J; Banos A; Paraskevoulakos C; Butcher E; Padovani C; Scott TB J Hazard Mater; 2015 Mar; 285():221-7. PubMed ID: 25497037 [TBL] [Abstract][Full Text] [Related]
6. U(VI) sorption and reduction kinetics on the magnetite (111) surface. Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA Environ Sci Technol; 2012 Apr; 46(7):3821-30. PubMed ID: 22394451 [TBL] [Abstract][Full Text] [Related]
7. Decontamination of uranium-contaminated steel surfaces by hydroxycarboxylic acid with uranium recovery. Francis AJ; Dodge CJ; McDonald JA; Halada GP Environ Sci Technol; 2005 Jul; 39(13):5015-21. PubMed ID: 16053105 [TBL] [Abstract][Full Text] [Related]
8. Association of uranium with iron oxides typically formed on corroding steel surfaces. Dodge CJ; Francis AJ; Gillow JB; Halada GP; Eng C; Clayton CR Environ Sci Technol; 2002 Aug; 36(16):3504-11. PubMed ID: 12214641 [TBL] [Abstract][Full Text] [Related]
9. XANES-Based Determination of Redox Potentials Imposed by Steel Corrosion Products in Cement-Based Media. Ma B; Fernandez-Martinez A; Madé B; Findling N; Markelova E; Salas-Colera E; Maffeis TGG; Lewis AR; Tisserand D; Bureau S; Charlet L Environ Sci Technol; 2018 Oct; 52(20):11931-11940. PubMed ID: 30211548 [TBL] [Abstract][Full Text] [Related]
10. Influence of dynamical conditions on the reduction of U(VI) at the magnetite-solution interface. Ilton ES; Boily JF; Buck EC; Skomurski FN; Rosso KM; Cahill CL; Bargar JR; Felmy AR Environ Sci Technol; 2010 Jan; 44(1):170-6. PubMed ID: 20039748 [TBL] [Abstract][Full Text] [Related]
11. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation. Latta DE; Pearce CI; Rosso KM; Kemner KM; Boyanov MI Environ Sci Technol; 2013 May; 47(9):4121-30. PubMed ID: 23597442 [TBL] [Abstract][Full Text] [Related]
12. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. Fan FL; Qin Z; Bai J; Rong WD; Fan FY; Tian W; Wu XL; Wang Y; Zhao L J Environ Radioact; 2012 Apr; 106():40-6. PubMed ID: 22304999 [TBL] [Abstract][Full Text] [Related]
13. Sorption of Th(IV) onto iron corrosion products: EXAFS study. Seco F; Hennig C; de Pablo J; Rovira M; Rojo I; Martí V; Giménez J; Duro L; Grivé M; Bruno J Environ Sci Technol; 2009 Apr; 43(8):2825-30. PubMed ID: 19475957 [TBL] [Abstract][Full Text] [Related]
14. Corrosion and transport of depleted uranium in sand-rich environments. Handley-Sidhu S; Bryan ND; Worsfold PJ; Vaughan DJ; Livens FR; Keith-Roach MJ Chemosphere; 2009 Nov; 77(10):1434-9. PubMed ID: 19783278 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Tapia-Rodriguez A; Luna-Velasco A; Field JA; Sierra-Alvarez R Water Res; 2010 Apr; 44(7):2153-62. PubMed ID: 20060558 [TBL] [Abstract][Full Text] [Related]
16. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository. Sureda R; Martínez-Lladó X; Rovira M; de Pablo J; Casas I; Giménez J J Hazard Mater; 2010 Sep; 181(1-3):881-5. PubMed ID: 20638966 [TBL] [Abstract][Full Text] [Related]
17. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA Environ Sci Technol; 2012 Apr; 46(7):3811-20. PubMed ID: 22364181 [TBL] [Abstract][Full Text] [Related]
18. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions. Schütz MK; Schlegel ML; Libert M; Bildstein O Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite. Yuan K; Ilton ES; Antonio MR; Li Z; Cook PJ; Becker U Environ Sci Technol; 2015 May; 49(10):6206-13. PubMed ID: 25893535 [TBL] [Abstract][Full Text] [Related]
20. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity. Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]