These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 17383672)
1. Optical differential mobility analyzer for micron size colloidal particles: theoretical approach. Kim SB; Song DK; Kim SS J Colloid Interface Sci; 2007 Jul; 311(1):102-9. PubMed ID: 17383672 [TBL] [Abstract][Full Text] [Related]
2. Cross-type optical particle separation in a microchannel. Kim SB; Yoon SY; Sung HJ; Kim SS Anal Chem; 2008 Apr; 80(7):2628-30. PubMed ID: 18275223 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic sorting in an optical lattice. MacDonald MP; Spalding GC; Dholakia K Nature; 2003 Nov; 426(6965):421-4. PubMed ID: 14647376 [TBL] [Abstract][Full Text] [Related]
5. Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. MacDonald MP; Neale S; Paterson L; Richies A; Dholakia K; Spalding GC J Biol Regul Homeost Agents; 2004; 18(2):200-5. PubMed ID: 15471228 [TBL] [Abstract][Full Text] [Related]
6. An optically driven pump for microfluidics. Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723 [TBL] [Abstract][Full Text] [Related]
7. Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation. Jen SH; Dai HL J Phys Chem B; 2006 Nov; 110(46):23000-3. PubMed ID: 17107136 [TBL] [Abstract][Full Text] [Related]
8. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X; Cooper JM; Monaghan PB; Haswell SJ Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220 [TBL] [Abstract][Full Text] [Related]
9. Resolution of cross-type optical particle separation. Kim SB; Yoon SY; Sung HJ; Kim SS Anal Chem; 2008 Aug; 80(15):6023-8. PubMed ID: 18598054 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation. Bhardwaj P; Bagdi P; Sen AK Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066 [TBL] [Abstract][Full Text] [Related]
11. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses. Yoon YZ; Cicuta P Opt Express; 2010 Mar; 18(7):7076-84. PubMed ID: 20389728 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic sorting with a moving array of optical traps. Dasgupta R; Ahlawat S; Gupta PK Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110 [TBL] [Abstract][Full Text] [Related]
13. Multiple traps created with an inclined dual-fiber system. Liu Y; Yu M Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409 [TBL] [Abstract][Full Text] [Related]
14. Measuring colloidal interactions with confocal microscopy. Royall CP; Louis AA; Tanaka H J Chem Phys; 2007 Jul; 127(4):044507. PubMed ID: 17672707 [TBL] [Abstract][Full Text] [Related]
15. Optical trapping forces for colloids at the oil-water interface. Park BJ; Furst EM Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357 [TBL] [Abstract][Full Text] [Related]
16. Continuous separation of particles using a microfluidic device equipped with flow rate control valves. Sai Y; Yamada M; Yasuda M; Seki M J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945 [TBL] [Abstract][Full Text] [Related]