These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17383782)

  • 1. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He.
    Visser A; Broers HP; van der Grift B; Bierkens MF
    Environ Pollut; 2007 Aug; 148(3):797-807. PubMed ID: 17383782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of natural SF6 in the sedimentary aquifers of the North China Plain as a restriction on groundwater dating.
    von Rohden C; Kreuzer A; Chen Z; Aeschbach-Hertig W
    Isotopes Environ Health Stud; 2010 Sep; 46(3):279-90. PubMed ID: 20603738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations.
    Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J
    Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands).
    Rozemeijer JC; Broers HP
    Environ Pollut; 2007 Aug; 148(3):695-706. PubMed ID: 17418466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and 3H-3He groundwater dating: a case study in Portugal.
    Amaral HI; Fernandes J; Berg M; Schwarzenbach RP; Kipfer R
    Chemosphere; 2009 Oct; 77(6):805-12. PubMed ID: 19740509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters.
    Kluge T; Wieser M; Aeschbach-Hertig W
    Isotopes Environ Health Stud; 2010 Sep; 46(3):299-311. PubMed ID: 20812118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trend reversal of nitrate in Danish groundwater--a reflection of agricultural practices and nitrogen surpluses since 1950.
    Hansen B; Thorling L; Dalgaard T; Erlandsen M
    Environ Sci Technol; 2011 Jan; 45(1):228-34. PubMed ID: 21138289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate in aquifers beneath agricultural systems.
    Burkart MR; Stoner JD
    Water Sci Technol; 2002; 45(9):19-28. PubMed ID: 12079102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods for the detection and extrapolation of trends in groundwater quality.
    Visser A; Dubus I; Broers HP; Brouyère S; Korcz M; Orban P; Goderniaux P; Batlle-Aguilar J; Surdyk N; Amraoui N; Job H; Pinault JL; Bierkens M
    J Environ Monit; 2009 Nov; 11(11):2030-43. PubMed ID: 19890560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of As, and (3)H/(3)He ages, in groundwater from West Bengal: Implications for monitoring.
    McArthur JM; Banerjee DM; Sengupta S; Ravenscroft P; Klump S; Sarkar A; Disch B; Kipfer R
    Water Res; 2010 Jul; 44(14):4171-85. PubMed ID: 20542311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comment on "Trend reversal of nitrate in Danish groundwater-a reflection of agricultural practices and nitrogen surpluses since 1950".
    Spruill TB
    Environ Sci Technol; 2011 May; 45(9):4187-8; author reply 4189. PubMed ID: 21456544
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of geochemical stressors on shallow groundwater quality.
    An YJ; Kampbell DH; Jeong SW; Jewell KP; Masoner JR
    Sci Total Environ; 2005 Sep; 348(1-3):257-66. PubMed ID: 16162329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer.
    Orban P; Brouyère S; Batlle-Aguilar J; Couturier J; Goderniaux P; Leroy M; Maloszewski P; Dassargues A
    J Contam Hydrol; 2010 Oct; 118(1-2):79-93. PubMed ID: 20864207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.
    Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B
    Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early graphic representations of groundwater nitrate concentrations.
    Brick G; Alexander EC
    Ground Water; 2012; 50(2):319-22. PubMed ID: 22150474
    [No Abstract]   [Full Text] [Related]  

  • 19. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach.
    Pastén-Zapata E; Ledesma-Ruiz R; Harter T; Ramírez AI; Mahlknecht J
    Sci Total Environ; 2014 Feb; 470-471():855-64. PubMed ID: 24200723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydro-chemical assessment and groundwater recharge mechanism in the humid tropics: a case study.
    Hameed AS; Prasad NB
    J Environ Sci Eng; 2008 Oct; 50(4):263-70. PubMed ID: 19697760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.