BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17383872)

  • 1. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil.
    Kim Y; Parker W
    Bioresour Technol; 2008 Mar; 99(5):1409-16. PubMed ID: 17383872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts.
    Park HJ; Heo HS; Park YK; Yim JH; Jeon JK; Park J; Ryu C; Kim SS
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S83-5. PubMed ID: 19635664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.
    Tsai WT; Chang JH; Hsien KJ; Chang YM
    Bioresour Technol; 2009 Jan; 100(1):406-12. PubMed ID: 18656347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.
    Tsai WT; Lee MK; Chang JH; Su TY; Chang YM
    Bioresour Technol; 2009 May; 100(9):2650-4. PubMed ID: 19136255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge.
    Cao JP; Zhao XY; Morishita K; Wei XY; Takarada T
    Bioresour Technol; 2010 Oct; 101(19):7648-52. PubMed ID: 20488694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy and nutrient recovery from sewage sludge via pyrolysis.
    Bridle TR; Pritchard D
    Water Sci Technol; 2004; 50(9):169-75. PubMed ID: 15581009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.
    Xu C; Lancaster J
    Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties.
    He R; Ye XP; English BC; Satrio JA
    Bioresour Technol; 2009 Nov; 100(21):5305-11. PubMed ID: 19540108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive utilization of the pyrolysis products from sewage sludge.
    Xu WY; Wu D
    Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel production by in situ transesterification of municipal primary and secondary sludges.
    Mondala A; Liang K; Toghiani H; Hernandez R; French T
    Bioresour Technol; 2009 Feb; 100(3):1203-10. PubMed ID: 18809323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.
    Ohm TI; Chae JS; Lim KS; Moon SH
    J Hazard Mater; 2010 Jun; 178(1-3):483-8. PubMed ID: 20153108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triacetonamine formation in a bio-oil from fast pyrolysis of sewage sludge using acetone as the absorption solvent.
    Cao JP; Zhao XY; Morishita K; Li LY; Xiao XB; Obara R; Wei XY; Takarada T
    Bioresour Technol; 2010 Jun; 101(11):4242-5. PubMed ID: 20137920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal processing of paper sludge and characterisation of its pyrolysis products.
    Strezov V; Evans TJ
    Waste Manag; 2009 May; 29(5):1644-8. PubMed ID: 19136244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature conversion (LTC)--an alternative method to treat sludge generated in an industrial wastewater treatment station--batch and continuous process comparison.
    Vieira GE; Romeiro GA; Sella SM; Damasceno RN; Pereira RG
    Bioresour Technol; 2009 Feb; 100(4):1544-7. PubMed ID: 18976904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge.
    Xiao BY; Liu JX
    J Environ Sci (China); 2006; 18(1):6-12. PubMed ID: 20050540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.