BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17383960)

  • 1. Modelling HA protein-mediated interaction between an influenza virus and a healthy cell: pre-fusion membrane deformation.
    Vaidya NK; Huang H; Takagi S
    Math Med Biol; 2007 Sep; 24(3):251-70. PubMed ID: 17383960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of lipid-protein rearrangements during viral infection.
    Chizmadzhev YA
    Bioelectrochemistry; 2004 Jun; 63(1-2):129-36. PubMed ID: 15110263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers.
    Colotto A; Epand RM
    Biochemistry; 1997 Jun; 36(25):7644-51. PubMed ID: 9201905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An antibody that prevents the hemagglutinin low pH fusogenic transition.
    Barbey-Martin C; Gigant B; Bizebard T; Calder LJ; Wharton SA; Skehel JJ; Knossow M
    Virology; 2002 Mar; 294(1):70-4. PubMed ID: 11886266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The role of lipids in the interaction of influenza virus with the host cell].
    Frolov AF; Vasiurenko ZP; Chentsova NP; Maksimenok EV
    Mol Gen Mikrobiol Virusol; 1990 Apr; (4):3-8. PubMed ID: 2195322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Glu residues of the influenza hemagglutinin fusion peptide in the pH dependence of fusion activity.
    Korte T; Epand RF; Epand RM; Blumenthal R
    Virology; 2001 Oct; 289(2):353-61. PubMed ID: 11689057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function.
    Langley WA; Thoennes S; Bradley KC; Galloway SE; Talekar GR; Cummings SF; Varecková E; Russell RJ; Steinhauer DA
    Virology; 2009 Nov; 394(2):321-30. PubMed ID: 19755201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of influenza viral membrane fusion.
    Blijleven JS; Boonstra S; Onck PR; van der Giessen E; van Oijen AM
    Semin Cell Dev Biol; 2016 Dec; 60():78-88. PubMed ID: 27401120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids.
    Lagüe P; Roux B; Pastor RW
    J Mol Biol; 2005 Dec; 354(5):1129-41. PubMed ID: 16297931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of target membrane sialic acid residues in the fusion activity of the influenza virus: the effect of two types of ganglioside on the kinetics of membrane merging.
    Ramalho-Santos J; Pedroso De Lima MC
    Cell Mol Biol Lett; 2004; 9(2):337-51. PubMed ID: 15213813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research advances on fusion peptide and mechanisms about virus penetration into membrane].
    Wu M; Nie SQ
    Sheng Li Ke Xue Jin Zhan; 1998 Jul; 29(3):221-5. PubMed ID: 12501639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposome composition effects on lipid mixing between cells expressing influenza virus hemagglutinin and bound liposomes.
    Bailey A; Zhukovsky M; Gliozzi A; Chernomordik LV
    Arch Biochem Biophys; 2005 Jul; 439(2):211-21. PubMed ID: 15963452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influenza-virus-liposome lipid mixing is leaky and largely insensitive to the material properties of the target membrane.
    Shangguan T; Alford D; Bentz J
    Biochemistry; 1996 Apr; 35(15):4956-65. PubMed ID: 8664288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of X31 influenza virus fusion on phosphatidylserine asymmetry in erythrocytes.
    Pak CC; Blumenthal R
    Biochim Biophys Acta; 1996 Jan; 1278(1):98-104. PubMed ID: 8611613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
    Huang Q; Korte T; Rachakonda PS; Knapp EW; Herrmann A
    Proteins; 2009 Feb; 74(2):291-303. PubMed ID: 18618705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation.
    Longo ML; Waring AJ; Hammer DA
    Biophys J; 1997 Sep; 73(3):1430-9. PubMed ID: 9284310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents.
    Clancy EK; Barry C; Ciechonska M; Duncan R
    Virology; 2010 Feb; 397(1):119-29. PubMed ID: 19931884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements.
    Kozlov MM; Chernomordik LV
    Biophys J; 1998 Sep; 75(3):1384-96. PubMed ID: 9726939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Host range of influenza viruses and their receptor binding specificities].
    Suzuki Y
    Nihon Rinsho; 1997 Oct; 55(10):2640-7. PubMed ID: 9360384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension of membranes expressing the hemagglutinin of influenza virus inhibits fusion.
    Markosyan RM; Melikyan GB; Cohen FS
    Biophys J; 1999 Aug; 77(2):943-52. PubMed ID: 10423439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.