These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 17384160)

  • 1. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray.
    Yamakawa H; Hirose T; Kuroda M; Yamaguchi T
    Plant Physiol; 2007 May; 144(1):258-77. PubMed ID: 17384160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice.
    Liu X; Guo T; Wan X; Wang H; Zhu M; Li A; Su N; Shen Y; Mao B; Zhai H; Mao L; Wan J
    BMC Genomics; 2010 Dec; 11():730. PubMed ID: 21192807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of pyruvate orthophosphate dikinase activity is associated with high temperature-induced chalkiness in rice grains.
    Wang ZM; Li HX; Liu XF; He Y; Zeng HL
    Plant Physiol Biochem; 2015 Apr; 89():76-84. PubMed ID: 25725409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.
    Ahmed N; Tetlow IJ; Nawaz S; Iqbal A; Mubin M; Nawaz ul Rehman MS; Butt A; Lightfoot DA; Maekawa M
    J Sci Food Agric; 2015 Aug; 95(11):2237-43. PubMed ID: 25284759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains.
    Nakata M; Fukamatsu Y; Miyashita T; Hakata M; Kimura R; Nakata Y; Kuroda M; Yamaguchi T; Yamakawa H
    Front Plant Sci; 2017; 8():2089. PubMed ID: 29270189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation.
    Lin Z; Wang Z; Zhang X; Liu Z; Li G; Wang S; Ding Y
    Plant Cell Physiol; 2017 Mar; 58(3):560-573. PubMed ID: 28158863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights into how a deficiency of amylose affects carbon allocation--carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant.
    Zhang MZ; Fang JH; Yan X; Liu J; Bao JS; Fransson G; Andersson R; Jansson C; Åman P; Sun C
    BMC Plant Biol; 2012 Dec; 12():230. PubMed ID: 23217057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation.
    Yamakawa H; Hakata M
    Plant Cell Physiol; 2010 May; 51(5):795-809. PubMed ID: 20304786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic and Glycomic Characterization of Rice Chalky Grains Produced Under Moderate and High-temperature Conditions in Field System.
    Kaneko K; Sasaki M; Kuribayashi N; Suzuki H; Sasuga Y; Shiraya T; Inomata T; Itoh K; Baslam M; Mitsui T
    Rice (N Y); 2016 Dec; 9(1):26. PubMed ID: 27246013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype-dependent and heat-induced grain chalkiness in rice correlates with the expression patterns of starch biosynthesis genes.
    Gann PJ; Esguerra M; Counce PA; Srivastava V
    Plant Environ Interact; 2021 Aug; 2(4):165-176. PubMed ID: 37283703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines.
    Abe N; Asai H; Yago H; Oitome NF; Itoh R; Crofts N; Nakamura Y; Fujita N
    BMC Plant Biol; 2014 Mar; 14():80. PubMed ID: 24670252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly.
    Lin Z; Zhang X; Yang X; Li G; Tang S; Wang S; Ding Y; Liu Z
    BMC Plant Biol; 2014 Jun; 14():163. PubMed ID: 24924297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch accumulation in rice grains subjected to drought during grain filling stage.
    V P; Ali K; Singh A; Vishwakarma C; Krishnan V; Chinnusamy V; Tyagi A
    Plant Physiol Biochem; 2019 Sep; 142():440-451. PubMed ID: 31419646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme.
    Jiang H; Dian W; Wu P
    Phytochemistry; 2003 May; 63(1):53-9. PubMed ID: 12657298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch molecular structural differences between chalky and translucent parts of chalky rice grains.
    Tao K; Liu X; Yu W; Neoh GKS; Gilbert RG
    Food Chem; 2022 Nov; 394():133471. PubMed ID: 35716496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch.
    Zhang G; Cheng Z; Zhang X; Guo X; Su N; Jiang L; Mao L; Wan J
    Genome; 2011 Jun; 54(6):448-59. PubMed ID: 21595523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the activities of enzymes involved in starch synthesis and accumulation in caryopsis of transgenic rice with antisense Wx gene].
    Chen G; Wang Z; Liu QQ; Xiong F; Gu YJ; Gu GJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):209-16. PubMed ID: 16622321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Interactions between Enzymes Involved in Amylose and Amylopectin Biosynthesis in Rice Based on Mathematical Models.
    Zhang Z; Tappiban P; Ying Y; Hu Y; Bao J
    Biomacromolecules; 2022 Mar; 23(3):1443-1452. PubMed ID: 35143725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature.
    Hakata M; Kuroda M; Miyashita T; Yamaguchi T; Kojima M; Sakakibara H; Mitsui T; Yamakawa H
    Plant Biotechnol J; 2012 Dec; 10(9):1110-7. PubMed ID: 22967050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GWC1 is essential for high grain quality in rice.
    Guo L; Chen W; Tao L; Hu B; Qu G; Tu B; Yuan H; Ma B; Wang Y; Zhu X; Qin P; Li S
    Plant Sci; 2020 Jul; 296():110497. PubMed ID: 32540015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.