These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intelligent and compact coherent Doppler lidar with fiber-based configuration for robust wind sensing in various atmospheric and environmental conditions. Kotake N; Sakamaki H; Imaki M; Miwa Y; Ando T; Yabugaki Y; Enjo M; Kameyama S Opt Express; 2022 May; 30(11):20038-20062. PubMed ID: 36221764 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Wei T; Xia H; Hu J; Wang C; Shangguan M; Wang L; Jia M; Dou X Opt Express; 2019 Oct; 27(22):31235-31245. PubMed ID: 31684359 [TBL] [Abstract][Full Text] [Related]
4. Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind. Cezard N; Le Mehaute S; Le Gouët J; Valla M; Goular D; Fleury D; Planchat C; Dolfi-Bouteyre A Opt Express; 2020 Jul; 28(15):22345-22357. PubMed ID: 32752499 [TBL] [Abstract][Full Text] [Related]
5. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System. Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511 [TBL] [Abstract][Full Text] [Related]
6. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Frehlich R Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185 [TBL] [Abstract][Full Text] [Related]
7. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations. Abari CF; Chu X; Michael Hardesty R; Mann J Appl Opt; 2015 Oct; 54(30):8999-9009. PubMed ID: 26560390 [TBL] [Abstract][Full Text] [Related]
8. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source. Lombard L; Valla M; Planchat C; Goular D; Augère B; Bourdon P; Canat G Opt Lett; 2015 Mar; 40(6):1030-3. PubMed ID: 25768174 [TBL] [Abstract][Full Text] [Related]
9. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis. Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831 [TBL] [Abstract][Full Text] [Related]
13. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Wang C; Xia H; Shangguan M; Wu Y; Wang L; Zhao L; Qiu J; Zhang R Opt Express; 2017 Aug; 25(17):20663-20674. PubMed ID: 29041745 [TBL] [Abstract][Full Text] [Related]
14. Meter-scale and sub-second-resolution coherent Doppler wind LIDAR and hyperfine wind observation. Liang C; Wang C; Xue X; Dou X; Chen T Opt Lett; 2022 Jul; 47(13):3179-3182. PubMed ID: 35776579 [TBL] [Abstract][Full Text] [Related]
15. Doppler Lidar with High Sensitivity and Large Dynamic Range for Atmospheric Wind Measurement. Wang L; Tan LQ; Chang B; Lu GG; Gao F; Hua DX Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):958-63. PubMed ID: 30160450 [TBL] [Abstract][Full Text] [Related]
16. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network. Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030 [TBL] [Abstract][Full Text] [Related]
17. Performance analysis of dual-frequency lidar in the detection of the complex wind field. Xu H; Li J Opt Express; 2021 Jul; 29(15):23524-23539. PubMed ID: 34614617 [TBL] [Abstract][Full Text] [Related]
18. Theoretical performance of a 1.5-µm satellite-borne coherent Doppler wind lidar using a planar waveguide optical amplifier with a demonstrated figure of merit: simulation of signal detection probability, measurement precision, and bias. Yoshiki W; Yanagisawa T; Kameyama S; Imaki M; Sakaizawa D Appl Opt; 2024 Mar; 63(7):1681-1694. PubMed ID: 38437267 [TBL] [Abstract][Full Text] [Related]
19. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence. Chan KP; Killinger DK; Sugimoto N Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251 [TBL] [Abstract][Full Text] [Related]
20. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness. Zhai X; Wu S; Liu B Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]