These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17385045)

  • 1. Flow and high affinity binding affect the elastic modulus of the nucleus, cell body and the stress fibers of endothelial cells.
    Mathur AB; Reichert WM; Truskey GA
    Ann Biomed Eng; 2007 Jul; 35(7):1120-30. PubMed ID: 17385045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect of high-affinity binding and flow preconditioning on endothelial cell adhesion.
    Mathur AB; Truskey GA; Reichert WM
    J Biomed Mater Res A; 2003 Jan; 64(1):155-63. PubMed ID: 12483708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity augmentation of endothelial cell attachment: long-term effects on focal contact and actin filament formation.
    Mathur AB; Chan BP; Truskey GA; Reichert WM
    J Biomed Mater Res A; 2003 Sep; 66(4):729-37. PubMed ID: 12926023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion.
    Anamelechi CC; Truskey GA; Reichert WM
    Biomaterials; 2005 Dec; 26(34):6887-96. PubMed ID: 15990164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.
    Chan BP; Reichert WM; Truskey GA
    Biomaterials; 2004 Aug; 25(18):3951-61. PubMed ID: 15046885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage.
    Teichmann J; Morgenstern A; Seebach J; Schnittler HJ; Werner C; Pompe T
    Biomaterials; 2012 Mar; 33(7):1959-69. PubMed ID: 22154622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell distribution of stress fibres in response to the geometry of the adhesive environment.
    Théry M; Pépin A; Dressaire E; Chen Y; Bornens M
    Cell Motil Cytoskeleton; 2006 Jun; 63(6):341-55. PubMed ID: 16550544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction.
    Moon JJ; Matsumoto M; Patel S; Lee L; Guan JL; Li S
    J Cell Physiol; 2005 Apr; 203(1):166-76. PubMed ID: 15389626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal effect of functional blocking of beta1 integrin on cell adhesion strength under serum depletion.
    Cai N; Wong CC; Tan SC; Chan V; Liao K
    Langmuir; 2009 Sep; 25(18):10939-47. PubMed ID: 19735145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes.
    McCue S; Noria S; Langille BL
    Trends Cardiovasc Med; 2004 May; 14(4):143-51. PubMed ID: 15177265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of the mechanical response of focal adhesions to shear flow.
    Biton YY; Safran SA
    J Phys Condens Matter; 2010 May; 22(19):194111. PubMed ID: 21386437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of strain on single stress fibers in living endothelial cells induced by fluid shear stress.
    Ueki Y; Uda Y; Sakamoto N; Sato M
    Biochem Biophys Res Commun; 2010 May; 395(3):441-6. PubMed ID: 20385099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy.
    Costa KD; Sim AJ; Yin FC
    J Biomech Eng; 2006 Apr; 128(2):176-84. PubMed ID: 16524328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress.
    Tsuruta D; Jones JC
    J Cell Sci; 2003 Dec; 116(Pt 24):4977-84. PubMed ID: 14625391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces.
    Truskey GA; Pirone JS
    J Biomed Mater Res; 1990 Oct; 24(10):1333-53. PubMed ID: 2283352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and finite element modeling of the force balance in the vertical section of adhering vascular endothelial cells.
    Deguchi S; Fukamachi H; Hashimoto K; Iio K; Tsujioka K
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):173-85. PubMed ID: 19627821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.