These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17385567)

  • 1. A vortex pump-based optically-transparent microfluidic platform for biotech and medical applications.
    Lei KF; Law WC; Suen YK; Li WJ; Yam Y; Ho HP; Kong SK
    Proc Inst Mech Eng H; 2007 Feb; 221(2):129-41. PubMed ID: 17385567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counter-propagating optical trapping system for size and refractive index measurement of microparticles.
    Flynn RA; Shao B; Chachisvilis M; Ozkan M; Esener SC
    Biosens Bioelectron; 2006 Jan; 21(7):1029-36. PubMed ID: 16368481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface plasmon resonance sensor on a compact disk-type microfluidic device.
    Hemmi A; Usui T; Moto A; Tobita T; Soh N; Nakano K; Zeng H; Uchiyama K; Imato T; Nakajima H
    J Sep Sci; 2011 Oct; 34(20):2913-9. PubMed ID: 21928434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of plasmonic trapping in a microfluidic environment.
    Huang L; Maerkl SJ; Martin OJ
    Opt Express; 2009 Apr; 17(8):6018-24. PubMed ID: 19365421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering approaches to biomanipulation.
    Desai JP; Pillarisetti A; Brooks AD
    Annu Rev Biomed Eng; 2007; 9():35-53. PubMed ID: 17362196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bio-molecular interactions through recirculating microflows.
    Chandrasekaran A; Packirisamy M
    IET Nanobiotechnol; 2008 Jun; 2(2):39-46. PubMed ID: 18500911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time optical biosensor based on differential phase measurement of surface plasmon resonance.
    Ho HP; Law WC; Wu SY; Lin C; Kong SK
    Biosens Bioelectron; 2005 Apr; 20(10):2177-80. PubMed ID: 15741095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SU-8 polymer enclosed microchannels with interconnect and nanohole arrays as an optical detection device for biospecies.
    Westwood SM; Gray BL; Grist S; Huffman K; Jaffer S; Kavanagh KL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5652-5. PubMed ID: 19163999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.