BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17385817)

  • 1. Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta.
    Shoji O; Fujishiro T; Nakajima H; Kim M; Nagano S; Shiro Y; Watanabe Y
    Angew Chem Int Ed Engl; 2007; 46(20):3656-9. PubMed ID: 17385817
    [No Abstract]   [Full Text] [Related]  

  • 2. Passerini three-component reaction of alcohols under catalytic aerobic oxidative conditions.
    Brioche J; Masson G; Zhu J
    Org Lett; 2010 Apr; 12(7):1432-5. PubMed ID: 20218637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate anion-triggered peroxygenation of non-native substrates by wild-type cytochrome P450s.
    Onoda H; Shoji O; Watanabe Y
    Dalton Trans; 2015 Sep; 44(34):15316-23. PubMed ID: 26125329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supramolecular catalyst for the decarboxylative hydroformylation of alpha,beta-unsaturated carboxylic acids.
    Smejkal T; Breit B
    Angew Chem Int Ed Engl; 2008; 47(21):3946-9. PubMed ID: 18418816
    [No Abstract]   [Full Text] [Related]  

  • 5. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.
    Kaizuka K; Miyamura H; Kobayashi S
    J Am Chem Soc; 2010 Nov; 132(43):15096-8. PubMed ID: 20931964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.
    Che CM; Yip WP; Yu WY
    Chem Asian J; 2006 Sep; 1(3):453-8. PubMed ID: 17441082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 8. [The oxenoid model of the mechanism of activating molecular oxygen by cytochrome p450: the role of substrate structure].
    Kuznetsov AV
    Mol Biol (Mosk); 1990; 24(5):1373-80. PubMed ID: 2290428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic oxidation of alcohols catalyzed by rhodium(III) porphyrin complexes in water: reactivity and mechanistic studies.
    Liu L; Yu M; Wayland BB; Fu X
    Chem Commun (Camb); 2010 Sep; 46(34):6353-5. PubMed ID: 20714542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and efficient oxidation of alcohols with ruthenium on carbon.
    Mori S; Takubo M; Makida K; Yanase T; Aoyagi S; Maegawa T; Monguchi Y; Sajiki H
    Chem Commun (Camb); 2009 Sep; (34):5159-61. PubMed ID: 20448979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric rearrangement of racemic epoxides catalyzed by chiral Brønsted acids.
    Zhuang M; Du H
    Org Biomol Chem; 2013 Mar; 11(9):1460-2. PubMed ID: 23361172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gem-Dibromomethylarenes: a convenient substitute for noncommercial aldehydes in the knoevenagel-doebner reaction for the synthesis of alpha,beta-unsaturated carboxylic acids.
    Augustine JK; Naik YA; Mandal AB; Chowdappa N; Praveen VB
    J Org Chem; 2007 Dec; 72(25):9854-6. PubMed ID: 17999533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral-substrate-assisted stereoselective epoxidation catalyzed by H2O2-dependent cytochrome P450SPα.
    Fujishiro T; Shoji O; Kawakami N; Watanabe T; Sugimoto H; Shiro Y; Watanabe Y
    Chem Asian J; 2012 Oct; 7(10):2286-93. PubMed ID: 22700535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates.
    Maurya MR; Kumar U; Manikandan P
    Dalton Trans; 2006 Aug; (29):3561-75. PubMed ID: 16855757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NaIO4-mediated selective oxidation of alkylarenes and benzylic bromides/alcohols to carbonyl derivatives using water as solvent.
    Shaikh TM; Emmanuvel L; Sudalai A
    J Org Chem; 2006 Jun; 71(13):5043-6. PubMed ID: 16776545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P-450 model reactions: efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins.
    Rezaeifard A; Jafarpour M; Moghaddam GK; Amini F
    Bioorg Med Chem; 2007 Apr; 15(8):3097-101. PubMed ID: 17293117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols.
    Matsumoto T; Ueno M; Wang N; Kobayashi S
    Chem Asian J; 2008 Feb; 3(2):196-214. PubMed ID: 18232022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chiral cyclohexanone linked to polystyrene for solid-phase synthesis of chiral alpha-carbonyls.
    Spino C; Gund VG; Nadeau C
    J Comb Chem; 2005; 7(2):345-52. PubMed ID: 15762765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols.
    Shibuya M; Tomizawa M; Suzuki I; Iwabuchi Y
    J Am Chem Soc; 2006 Jul; 128(26):8412-3. PubMed ID: 16802802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient and general iron-catalyzed arylation of benzyl alcohols and benzyl carboxylates.
    Iovel I; Mertins K; Kischel J; Zapf A; Beller M
    Angew Chem Int Ed Engl; 2005 Jun; 44(25):3913-7. PubMed ID: 15900535
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.