These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17385891)

  • 1. The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis.
    Rogers MS; Tyler EM; Akyumani N; Kurtis CR; Spooner RK; Deacon SE; Tamber S; Firbank SJ; Mahmoud K; Knowles PF; Phillips SE; McPherson MJ; Dooley DM
    Biochemistry; 2007 Apr; 46(15):4606-18. PubMed ID: 17385891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue.
    Chaplin AK; Svistunenko DA; Hough MA; Wilson MT; Vijgenboom E; Worrall JA
    Biochem J; 2017 Feb; 474(5):809-825. PubMed ID: 28093470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the oxidized active site of galactose oxidase from realistic in silico models.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of galactose oxidase. The free radical site.
    Baron AJ; Stevens C; Wilmot C; Seneviratne KD; Blakeley V; Dooley DM; Phillips SE; Knowles PF; McPherson MJ
    J Biol Chem; 1994 Oct; 269(40):25095-105. PubMed ID: 7929198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The radical chemistry of galactose oxidase.
    Whittaker JW
    Arch Biochem Biophys; 2005 Jan; 433(1):227-39. PubMed ID: 15581579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission.
    Li J; Davis I; Griffith WP; Liu A
    J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electronic structure of the Cys-Tyr(*) free radical in galactose oxidase determined by EPR spectroscopy.
    Lee YK; Whittaker MM; Whittaker JW
    Biochemistry; 2008 Jun; 47(25):6637-49. PubMed ID: 18512952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen.
    Rogers MS; Hurtado-Guerrero R; Firbank SJ; Halcrow MA; Dooley DM; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2008 Sep; 47(39):10428-39. PubMed ID: 18771294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA.
    Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. π-π Stacking Interaction in an Oxidized Cu
    Oshita H; Suzuki T; Kawashima K; Abe H; Tani F; Mori S; Yajima T; Shimazaki Y
    Chemistry; 2019 Jun; 25(32):7649-7658. PubMed ID: 30912194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Biol Inorg Chem; 2008 Mar; 13(3):371-83. PubMed ID: 18057969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The function and characteristics of tyrosyl radical cofactors.
    Hoganson CW; Tommos C
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):116-22. PubMed ID: 15100023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H, and W164S variants.
    Ruiz-Dueñas FJ; Pogni R; Morales M; Giansanti S; Mate MJ; Romero A; Martínez MJ; Basosi R; Martínez AT
    J Biol Chem; 2009 Mar; 284(12):7986-94. PubMed ID: 19158088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical catalysis by galactose oxidase.
    Whittaker JW
    Chem Rev; 2003 Jun; 103(6):2347-63. PubMed ID: 12797833
    [No Abstract]   [Full Text] [Related]  

  • 18. A tyrosine-derived free radical in apogalactose oxidase.
    Whittaker MM; Whittaker JW
    J Biol Chem; 1990 Jun; 265(17):9610-3. PubMed ID: 2161837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced fructose oxidase activity in a galactose oxidase variant.
    Deacon SE; Mahmoud K; Spooner RK; Firbank SJ; Knowles PF; Phillips SE; McPherson MJ
    Chembiochem; 2004 Jul; 5(7):972-9. PubMed ID: 15239055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of arginine 160 of the EutB protein subunit for active site structure and radical catalysis in coenzyme B12-dependent ethanolamine ammonia-lyase.
    Sun L; Groover OA; Canfield JM; Warncke K
    Biochemistry; 2008 May; 47(20):5523-35. PubMed ID: 18444665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.