BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17386262)

  • 1. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases.
    Pham Y; Li L; Kim A; Erdogan O; Weinreb V; Butterfoss GL; Kuhlman B; Carter CW
    Mol Cell; 2007 Mar; 25(6):851-62. PubMed ID: 17386262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD; Schimmel P
    Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.
    Aravind L; Anantharaman V; Koonin EV
    Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases.
    Chandrasekaran SN; Yardimci GG; Erdogan O; Roach J; Carter CW
    Mol Biol Evol; 2013 Jul; 30(7):1588-604. PubMed ID: 23576570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase.
    Budiman ME; Knaggs MH; Fetrow JS; Alexander RW
    Proteins; 2007 Aug; 68(3):670-89. PubMed ID: 17510965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase.
    Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D
    Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fidelity of the translation of the genetic code.
    Sankaranarayanan R; Moras D
    Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed.
    Carter CW; Li L; Weinreb V; Collier M; Gonzalez-Rivera K; Jimenez-Rodriguez M; Erdogan O; Kuhlman B; Ambroggio X; Williams T; Chandrasekharan SN
    Biol Direct; 2014 Jun; 9():11. PubMed ID: 24927791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes.
    Fàbrega C; Farrow MA; Mukhopadhyay B; de Crécy-Lagard V; Ortiz AR; Schimmel P
    Nature; 2001 May; 411(6833):110-4. PubMed ID: 11333988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and expression of the Saccharomyces cerevisiae cytoplasmic tryptophanyl-tRNA synthetase gene.
    John TR; Ghosh M; Johnson JD
    Yeast; 1997 Jan; 13(1):37-41. PubMed ID: 9046085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic faced alpha-helices are widespread in the peptide extensions of the eukaryotic aminoacyl-tRNA synthetases.
    Massey SE
    In Silico Biol; 2006; 6(4):259-73. PubMed ID: 16922690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based phylogeny of class IIa tRNA synthetases in relation to an unusual biochemistry.
    Ribas de Pouplana L; Brown JR; Schimmel P
    J Mol Evol; 2001; 53(4-5):261-8. PubMed ID: 11675586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coding of Class I and II Aminoacyl-tRNA Synthetases.
    Carter CW
    Adv Exp Med Biol; 2017; 966():103-148. PubMed ID: 28828732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aminoacyl-tRNA synthetase family: modules at work.
    Delarue M; Moras D
    Bioessays; 1993 Oct; 15(10):675-87. PubMed ID: 8274143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.
    Campanacci V; Dubois DY; Becker HD; Kern D; Spinelli S; Valencia C; Pagot F; Salomoni A; Grisel S; Vincentelli R; Bignon C; Lapointe J; Giegé R; Cambillau C
    J Mol Biol; 2004 Mar; 337(2):273-83. PubMed ID: 15003446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.