BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17386439)

  • 1. Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell.
    Tian Y; Zhang L; Zuo J; Li Z; Gao S; Lu G
    Anal Chim Acta; 2007 Jan; 581(1):154-8. PubMed ID: 17386439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers.
    Qi D; Berger AJ
    Appl Spectrosc; 2004 Oct; 58(10):1165-71. PubMed ID: 15527516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell.
    Pelletier MJ; Altkorn R
    Anal Chem; 2001 Mar; 73(6):1393-7. PubMed ID: 11305681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman spectroscopy and a liquid core optical fiber.
    Qi D; Berger AJ
    J Biomed Opt; 2005; 10(3):031115. PubMed ID: 16229640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region.
    Santos LF; Wolthuis R; Koljenović S; Almeida RM; Puppels GJ
    Anal Chem; 2005 Oct; 77(20):6747-52. PubMed ID: 16223266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber.
    Qi D; Berger AJ
    Appl Opt; 2006 Jan; 45(3):489-94. PubMed ID: 16463733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and use of a Raman liquid-core waveguide sensor using preconcentration principles.
    Tanikkul S; Jakmunee J; Rayanakorn M; Grudpan K; Marquardt BJ; Gross GM; Prazen BJ; Burgess LW; Christian GD; Synovec RE
    Talanta; 2003 Mar; 59(4):809-16. PubMed ID: 18968968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy.
    Qi D; Berger AJ
    Appl Opt; 2007 Apr; 46(10):1726-34. PubMed ID: 17356615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiberoptic resonance Raman spectroscopy to measure carotenoid oxidative breakdown in live tissues.
    Bentz BG; Diaz J; Ring TA; Wade M; Kennington K; Burnett DM; McClane R; Fitzpatrick FA
    Cancer Prev Res (Phila); 2010 Apr; 3(4):529-38. PubMed ID: 20354162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential.
    Efremov EV; Ariese F; Gooijer C
    Anal Chim Acta; 2008 Jan; 606(2):119-34. PubMed ID: 18082644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cryogenic optical waveguide spectrometer for the measurement of low-temperature absorption spectra of dilute biological samples.
    Siddiqui MS; Stanley RJ
    Anal Biochem; 2005 Feb; 337(1):121-9. PubMed ID: 15649384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs.
    Frosch T; Yan D; Popp J
    Anal Chem; 2013 Jul; 85(13):6264-71. PubMed ID: 23758275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].
    Jia LH; Wang YD; Sun CL; Li ZL; Li ZW; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2686-8. PubMed ID: 20038038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles.
    Fox CB; Myers GA; Harris JM
    Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy.
    Chan JW; Esposito AP; Talley CE; Hollars CW; Lane SM; Huser T
    Anal Chem; 2004 Feb; 76(3):599-603. PubMed ID: 14750852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2.
    Herrera OD; Schneebeli L; Kieu K; Norwood RA; Peyghambarian N
    Opt Express; 2013 Apr; 21(7):8821-30. PubMed ID: 23571972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Raman cell based on hollow core photonic crystal fiber for human breath analysis.
    Chow KK; Short M; Lam S; McWilliams A; Zeng H
    Med Phys; 2014 Sep; 41(9):092701. PubMed ID: 25186415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive detection of antibiotics and physiological substances in the aqueous humor by Raman spectroscopy.
    Sideroudi TI; Pharmakakis NM; Papatheodorou GN; Voyiatzis GA
    Lasers Surg Med; 2006 Aug; 38(7):695-703. PubMed ID: 16736502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.