BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 17386444)

  • 1. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET).
    Algar WR; Krull UJ
    Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Langmuir; 2009 Jan; 25(1):633-8. PubMed ID: 19115878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Krull UJ
    Anal Chem; 2013 Aug; 85(15):7502-11. PubMed ID: 23837820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2006 Dec; 22(26):11346-52. PubMed ID: 17154624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compact functional quantum Dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection.
    Zhou D; Ying L; Hong X; Hall EA; Abell C; Klenerman D
    Langmuir; 2008 Mar; 24(5):1659-64. PubMed ID: 18193909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media.
    Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM
    Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.
    Wu CS; Cupps JM; Fan X
    Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Shahmuradyan A; Krull UJ
    Anal Chem; 2013 Feb; 85(3):1860-7. PubMed ID: 23272728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Tavares AJ; Noor MO; Vannoy CH; Algar WR; Krull UJ
    Anal Chem; 2012 Jan; 84(1):312-9. PubMed ID: 22136151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can luminescent quantum dots be efficient energy acceptors with organic dye donors?
    Clapp AR; Medintz IL; Fisher BR; Anderson GP; Mattoussi H
    J Am Chem Soc; 2005 Feb; 127(4):1242-50. PubMed ID: 15669863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positively charged compact quantum Dot-DNA complexes for detection of nucleic acids.
    Lee J; Choi Y; Kim J; Park E; Song R
    Chemphyschem; 2009 Mar; 10(5):806-11. PubMed ID: 19253931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.