These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17386486)

  • 1. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples.
    Metilda P; Prasad K; Kala R; Gladis JM; Rao TP; Naidu GR
    Anal Chim Acta; 2007 Jan; 582(1):147-53. PubMed ID: 17386486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of two-dimensional biomimetic uranyl optrode and its application to the analysis of natural waters.
    James D; Gladis JM; Pandey AK; Naidu GR; Prasada Rao T
    Talanta; 2008 Feb; 74(5):1420-7. PubMed ID: 18371799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective uranyl ion detection by polymeric ion-selective electrodes based on salphenH2 derivatives.
    Kim DW; Park KW; Yang MH; Kim TH; Mahajan RK; Kim JS
    Talanta; 2007 Nov; 74(2):223-8. PubMed ID: 18371633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents. Part I. Methylphosphonic acid.
    Prathish KP; Prasad K; Rao TP; Suryanarayana MV
    Talanta; 2007 Mar; 71(5):1976-80. PubMed ID: 19071551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.
    Preetha CR; Gladis JM; Rao TP; Venkateswaran G
    Environ Sci Technol; 2006 May; 40(9):3070-4. PubMed ID: 16719113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and efficient ion imprinted polymer for recovery of uranium from environmental samples.
    Pakade VE; Cukrowska EM; Darkwa J; Darko G; Torto N; Chimuka L
    Water Sci Technol; 2012; 65(4):728-36. PubMed ID: 22277233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the role of chelating ligand in the synthesis of ion-imprinted polymeric resins on the selective enrichment of uranium(VI).
    Metilda P; Gladis JM; Venkateswaran G; Prasada Rao T
    Anal Chim Acta; 2007 Mar; 587(2):263-71. PubMed ID: 17386782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast response cadmium-selective polymeric membrane electrode based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide as a new neutral carrier.
    Rezaei B; Meghdadi S; Zarandi RF
    J Hazard Mater; 2008 May; 153(1-2):179-86. PubMed ID: 17881121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric membrane sensors based on Cd(II) Schiff base complexes for selective iodide determination in environmental and medicinal samples.
    Singh AK; Mehtab S
    Talanta; 2008 Jan; 74(4):806-14. PubMed ID: 18371713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine.
    Gupta VK; Singh AK; Gupta B
    Anal Chim Acta; 2006 Aug; 575(2):198-204. PubMed ID: 17723591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead(II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity.
    Li XG; Ma XL; Huang MR
    Talanta; 2009 Apr; 78(2):498-505. PubMed ID: 19203615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water.
    Milja TE; Prathish KP; Prasada Rao T
    J Hazard Mater; 2011 Apr; 188(1-3):384-90. PubMed ID: 21345587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer.
    Benito-Peña E; Urraca JL; Sellergren B; Moreno-Bondi MC
    J Chromatogr A; 2008 Oct; 1208(1-2):62-70. PubMed ID: 18790491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores.
    Singh AK; Gupta VK; Gupta B
    Anal Chim Acta; 2007 Feb; 585(1):171-8. PubMed ID: 17386662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanex based uranyl sensitive polymeric membrane electrodes.
    Badr IH; Zidan WI; Akl ZF
    Talanta; 2014 Jan; 118():147-55. PubMed ID: 24274282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel flow injection potentiometric graphite coated ion-selective electrode for the low level determination of uranyl ion.
    Shamsipur M; Mizani F; Mousavi MF; Alizadeh N; Alizadeh K; Eshghi H; Karami H
    Anal Chim Acta; 2007 Apr; 589(1):22-32. PubMed ID: 17397648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel uranyl membrane sensor with potentiometric anionic response.
    Hassan SS; Attawiya AM
    Talanta; 2006 Nov; 70(4):883-9. PubMed ID: 18970854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a disposable mercury ion-selective optode based on trityl-picolinamide as ionophore.
    Kuswandi B; Nuriman ; Dam HH; Reinhoudt DN; Verboom W
    Anal Chim Acta; 2007 May; 591(2):208-13. PubMed ID: 17481410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different formats of imprinted polymers for determining organotin compounds in environmental samples.
    Gallego-Gallegos M; Muñoz-Olivas R; Cámara C
    J Environ Manage; 2009 Feb; 90 Suppl 1():S69-76. PubMed ID: 18951694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of 226Ra at ultratrace level in mineral water samples by sector field inductively coupled plasma mass spectrometry.
    Zoriy MV; Varga Z; Pickhardt C; Ostapczuk P; Hille R; Halicz L; Segal I; Becker JS
    J Environ Monit; 2005 May; 7(5):514-8. PubMed ID: 15877175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.