BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17386518)

  • 1. Chemometric application in classification and assessment of monitoring locations of an urban river system.
    Kannel PR; Lee S; Kanel SR; Khan SP
    Anal Chim Acta; 2007 Jan; 582(2):390-9. PubMed ID: 17386518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of chemometrics in river water classification.
    Kowalkowski T; Zbytniewski R; Szpejna J; Buszewski B
    Water Res; 2006 Feb; 40(4):744-52. PubMed ID: 16442142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water quality evaluation through application of chemometrics for Godavari river at Rajahmundry.
    Krishna MP; Moses GS; Krishna KV
    J Environ Sci Eng; 2009 Jan; 51(1):17-26. PubMed ID: 21114149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study.
    Singh KP; Malik A; Mohan D; Sinha S
    Water Res; 2004 Nov; 38(18):3980-92. PubMed ID: 15380988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial assessment of Langat River water quality using chemometrics.
    Juahir H; Zain SM; Aris AZ; Yusoff MK; Mokhtar MB
    J Environ Monit; 2010 Jan; 12(1):287-95. PubMed ID: 20082024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-temporal variation and comparative assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal).
    Kannel PR; Lee S; Kanel SR; Khan SP; Lee YS
    Environ Monit Assess; 2007 Jun; 129(1-3):433-59. PubMed ID: 17242978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of river water quality monitoring stations by principal component analysis.
    Ouyang Y
    Water Res; 2005 Jul; 39(12):2621-35. PubMed ID: 15993926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets.
    Astel A; Tsakovski S; Barbieri P; Simeonov V
    Water Res; 2007 Nov; 41(19):4566-78. PubMed ID: 17632213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran).
    Razmkhah H; Abrishamchi A; Torkian A
    J Environ Manage; 2010; 91(4):852-60. PubMed ID: 20056527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of water quality using chemometric tools: a case study of river Cooum, South India.
    Giridharan L; Venugopal T; Jayaprakash M
    Arch Environ Contam Toxicol; 2009 May; 56(4):654-69. PubMed ID: 19301065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques.
    Gazzaz NM; Yusoff MK; Ramli MF; Aris AZ; Juahir H
    Mar Pollut Bull; 2012 Apr; 64(4):688-98. PubMed ID: 22330076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of water quality of polluted lake using multivariate statistical techniques: a case study.
    Kazi TG; Arain MB; Jamali MK; Jalbani N; Afridi HI; Sarfraz RA; Baig JA; Shah AQ
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):301-9. PubMed ID: 18423587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater quality assessment using chemometric analysis in the Adyar River, South India.
    Venugopal T; Giridharan L; Jayaprakash M
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):180-90. PubMed ID: 18183448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmetric approaches to estimate pollution impacts on a coastal area by sediment and river water studies.
    Mihailov G; Simeonov V; Nikolov N; Mirinchev G
    Water Sci Technol; 2002; 46(8):45-52. PubMed ID: 12420964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal.
    Khatlwada NR; Takizawa S; Tran TV; Inoue M
    Water Sci Technol; 2002; 46(9):147-54. PubMed ID: 12448463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water.
    Saim N; Osman R; Sari Abg Spian DR; Jaafar MZ; Juahir H; Abdullah MP; Ghani FA
    Water Res; 2009 Dec; 43(20):5023-30. PubMed ID: 19896157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network.
    Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH
    Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong.
    Zhou F; Guo H; Liu Y; Jiang Y
    Mar Pollut Bull; 2007 Jun; 54(6):745-56. PubMed ID: 17320914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of artificial cutoff on a monitoring system and the water quality of the Keelung River.
    Lo SL; Kuo JT; Wang SM
    Water Sci Technol; 2002; 46(11-12):231-6. PubMed ID: 12523759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of seasonal variations in surface water quality.
    Ouyang Y; Nkedi-Kizza P; Wu QT; Shinde D; Huang CH
    Water Res; 2006 Dec; 40(20):3800-10. PubMed ID: 17069873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.