These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17386566)

  • 41. Assaying phosphoinositide phosphatases.
    Taylor GS; Dixon JE
    Methods Mol Biol; 2004; 284():217-27. PubMed ID: 15173619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides.
    Takiyama K; Kinoshita E; Kinoshita-Kikuta E; Fujioka Y; Kubo Y; Koike T
    Anal Biochem; 2009 May; 388(2):235-41. PubMed ID: 19281791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bright, highly water-soluble triazacyclononane europium complexes to detect ligand binding with time-resolved FRET microscopy.
    Delbianco M; Sadovnikova V; Bourrier E; Mathis G; Lamarque L; Zwier JM; Parker D
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10718-22. PubMed ID: 25115848
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient förster resonance energy transfer in a fast, serum-compatible immunoassay.
    Kreisig T; Hoffmann R; Zuchner T
    Chembiochem; 2013 Apr; 14(6):699-702. PubMed ID: 23532940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide-mediated energy transfer between an anionic water-soluble conjugated polymer and Texas red labeled DNA for protease and nuclease activity study.
    Zhang Y; Wang Y; Liu B
    Anal Chem; 2009 May; 81(10):3731-7. PubMed ID: 19371059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High capacity homogeneous non-radioactive cortisol detection assays for human 11beta-hydroxysteroid dehydrogenase type 1.
    Yu V; Tudor Y; Hale C; Plant M; Kim KW; Wang M; Nguyen Y; Miguel TS; Chen M; Nybo R; Baumgartner J; Kurzeja RJ; Powers D
    Assay Drug Dev Technol; 2007 Feb; 5(1):105-15. PubMed ID: 17355203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining microfluidic networks and peptide arrays for multi-enzyme assays.
    Su J; Bringer MR; Ismagilov RF; Mrksich M
    J Am Chem Soc; 2005 May; 127(20):7280-1. PubMed ID: 15898754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanodroplet profiling of enzymatic activities in a microarray.
    Uttamchandani M; Huang X; Chen GY; Yao SQ
    Bioorg Med Chem Lett; 2005 Apr; 15(8):2135-9. PubMed ID: 15808484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Violacein cytotoxicity on human blood lymphocytes and effect on phosphatases.
    Bromberg N; Justo GZ; Haun M; Durán N; Ferreira CV
    J Enzyme Inhib Med Chem; 2005 Oct; 20(5):449-54. PubMed ID: 16335052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study of fluorescence-labelled enzyme activity methods for assaying phosphatase activity in phytoplankton. A possible bias in the enzymatic pathway estimations.
    Díaz-de-Quijano D; Felip M
    J Microbiol Methods; 2011 Jul; 86(1):104-7. PubMed ID: 21443911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulating the Rate of Molecular Self-Assembly for Targeting Cancer Cells.
    Zhou J; Du X; Xu B
    Angew Chem Int Ed Engl; 2016 May; 55(19):5770-5. PubMed ID: 27062481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-(2'-phosphoryloxyphenyl)-4(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases.
    Huang Z; Terpetschnig E; You W; Haugland RP
    Anal Biochem; 1992 Nov; 207(1):32-9. PubMed ID: 1336935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.
    Zheng Z; Sun H; Hu C; Li G; Liu X; Chen P; Cui Y; Liu J; Wang J; Liang G
    Anal Chem; 2016 Mar; 88(6):3363-8. PubMed ID: 26901415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel method for screening bacterial colonies for phosphatase activity.
    van Ommen Kloeke F; Baty AM; Eastburn CC; Diwu Z; Geesey GG
    J Microbiol Methods; 1999 Oct; 38(1-2):25-31. PubMed ID: 10520582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fluorogenic assay of endogenous phosphatase for assessment of cell adhesion.
    Tolosa E; Shaw S
    J Immunol Methods; 1996 Jun; 192(1-2):165-72. PubMed ID: 8699013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced phosphorescence properties of a Pt-porphyrin derivative fixed on the surface of nano-porous glass.
    Mizokuro T; Abulikemu A; Sakagami Y; Jin T; Kamada K
    Photochem Photobiol Sci; 2018 May; 17(5):622-627. PubMed ID: 29697105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "S'ils n'ont pas de pain, qu'ils mangent de la brioche." Focus on "anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment".
    Esumi H
    Am J Physiol Cell Physiol; 2014 Feb; 306(4):C320-1. PubMed ID: 24336655
    [No Abstract]   [Full Text] [Related]  

  • 58. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.
    O'Shea DJ; O'Riordan TC; O'Sullivan PJ; Papkovsky DB
    Anal Chim Acta; 2007 Feb; 583(2):349-56. PubMed ID: 17386566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homogeneous assays for cellular proteases employing the platinum(II)-coproporphyrin label and time-resolved phosphorescence.
    O'Riordan TC; Hynes J; Yashunski D; Ponomarev GV; Papkovsky DB
    Anal Biochem; 2005 Jul; 342(1):111-9. PubMed ID: 15958187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer.
    Nishikata M; Yoshimura Y; Deyama Y; Suzuki K
    Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.