These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 17386579)

  • 21. Maldi-TOF mass spectrometry for analyzing cell-free fetal DNA in maternal plasma.
    Ding C
    Methods Mol Biol; 2008; 444():253-67. PubMed ID: 18425487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From gels to chips: "minisequencing" primer extension for analysis of point mutations and single nucleotide polymorphisms.
    Syvänen AC
    Hum Mutat; 1999; 13(1):1-10. PubMed ID: 9888384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Soper SA
    Biosens Bioelectron; 2006 Apr; 21(10):1915-23. PubMed ID: 16488597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping.
    Kyger EM; Krevolin MD; Powell MJ
    Anal Biochem; 1998 Jul; 260(2):142-8. PubMed ID: 9657870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genotyping of single-nucleotide polymorphisms by primer extension reaction in a dry-reagent dipstick format.
    Litos IK; Ioannou PC; Christopoulos TK; Traeger-Synodinos J; Kanavakis E
    Anal Chem; 2007 Jan; 79(2):395-402. PubMed ID: 17222001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discrimination of primer 3'-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction.
    Ayyadevara S; Thaden JJ; Shmookler Reis RJ
    Anal Biochem; 2000 Aug; 284(1):11-8. PubMed ID: 10933850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. K-ras mutation detection in colorectal cancer using the Pyrosequencing technique.
    Poehlmann A; Kuester D; Meyer F; Lippert H; Roessner A; Schneider-Stock R
    Pathol Res Pract; 2007; 203(7):489-97. PubMed ID: 17629419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-throughput genome-walking method and its use for cloning unknown flanking sequences.
    Reddy PS; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2008 Oct; 381(2):248-53. PubMed ID: 18674512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity comparison of real-time PCR probe designs on a model DNA plasmid.
    Wang L; Blasic JR; Holden MJ; Pires R
    Anal Biochem; 2005 Sep; 344(2):257-65. PubMed ID: 16091278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification.
    Okayama H; Curiel DT; Brantly ML; Holmes MD; Crystal RG
    J Lab Clin Med; 1989 Aug; 114(2):105-13. PubMed ID: 2787825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tag-extension-based method for sensitive and specific genotyping of single nucleotide polymorphism on microarray.
    Shan Q; Zheng Y; Chen G; Zheng G; Lu J; Lv X
    Clin Chim Acta; 2009 Nov; 409(1-2):11-7. PubMed ID: 19654005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.
    Sawamura K; Hashimoto M
    Anal Sci; 2017; 33(12):1457-1460. PubMed ID: 29225240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel use of limited primer extension in detecting mutations in human iduronate 2-sulfatase gene.
    Li P; Moore JF; Thompson JN
    Biochem Mol Biol Int; 1995 May; 35(6):1299-305. PubMed ID: 7492967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bst DNA polymerase permits rapid sequence analysis from nanogram amounts of template.
    Mead DA; McClary JA; Luckey JA; Kostichka AJ; Witney FR; Smith LM
    Biotechniques; 1991 Jul; 11(1):76-8, 80, 82-7. PubMed ID: 1954022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous monitoring of restriction endonuclease cleavage activity by universal molecular beacon light quenching coupled with real-time polymerase chain reaction.
    Li X; Song C; Zhao M; Li Y
    Anal Biochem; 2008 Oct; 381(1):1-7. PubMed ID: 18611388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orphan peak analysis: a novel method for detection of point mutations using an automated fluorescence DNA sequencer.
    Hattori M; Shibata A; Yoshioka K; Sakaki Y
    Genomics; 1993 Feb; 15(2):415-7. PubMed ID: 8449509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An isothermal method for whole genome amplification of fresh and degraded DNA for comparative genomic hybridization, genotyping and mutation detection.
    Lee CI; Leong SH; Png AE; Choo KW; Syn C; Lim DT; Law HY; Kon OL
    DNA Res; 2006 Apr; 13(2):77-88. PubMed ID: 16766515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.