These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 17386610)

  • 21. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems.
    Furdui VI; Harrison DJ
    Lab Chip; 2004 Dec; 4(6):614-8. PubMed ID: 15570374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device.
    Oakley JA; Shaw KJ; Docker PT; Dyer CE; Greenman J; Greenway GM; Haswell SJ
    Lab Chip; 2009 Jun; 9(11):1596-600. PubMed ID: 19458868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High flow rate microfluidic device for blood plasma separation using a range of temperatures.
    Rodríguez-Villarreal AI; Arundell M; Carmona M; Samitier J
    Lab Chip; 2010 Jan; 10(2):211-9. PubMed ID: 20066249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic handling of PCR solution and DNA amplification on a reaction chamber array biochip.
    Gong H; Ramalingam N; Chen L; Che J; Wang Q; Wang Y; Yang X; Yap PH; Neo CH
    Biomed Microdevices; 2006 Jun; 8(2):167-76. PubMed ID: 16688576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening.
    Thorslund S; Klett O; Nikolajeff F; Markides K; Bergquist J
    Biomed Microdevices; 2006 Mar; 8(1):73-9. PubMed ID: 16491334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics.
    Pantoja R; Nagarah JM; Starace DM; Melosh NA; Blunck R; Bezanilla F; Heath JR
    Biosens Bioelectron; 2004 Oct; 20(3):509-17. PubMed ID: 15494233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis.
    Jha SK; Chand R; Han D; Jang YC; Ra GS; Kim JS; Nahm BH; Kim YS
    Lab Chip; 2012 Nov; 12(21):4455-64. PubMed ID: 22960653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic purification and analysis of hematopoietic stem cells from bone marrow.
    Schirhagl R; Fuereder I; Hall EW; Medeiros BC; Zare RN
    Lab Chip; 2011 Sep; 11(18):3130-5. PubMed ID: 21799976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.
    Crowley TA; Pizziconi V
    Lab Chip; 2005 Sep; 5(9):922-9. PubMed ID: 16100575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wireless induction heating in a microfluidic device for cell lysis.
    Baek SK; Min J; Park JH
    Lab Chip; 2010 Apr; 10(7):909-17. PubMed ID: 20379569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.