These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 17386610)

  • 81. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis.
    Lounsbury JA; Karlsson A; Miranian DC; Cronk SM; Nelson DA; Li J; Haverstick DM; Kinnon P; Saul DJ; Landers JP
    Lab Chip; 2013 Apr; 13(7):1384-93. PubMed ID: 23389252
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Soper SA
    Biosens Bioelectron; 2006 Apr; 21(10):1915-23. PubMed ID: 16488597
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system.
    Cao W; Easley CJ; Ferrance JP; Landers JP
    Anal Chem; 2006 Oct; 78(20):7222-8. PubMed ID: 17037925
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples.
    Legendre LA; Bienvenue JM; Roper MG; Ferrance JP; Landers JP
    Anal Chem; 2006 Mar; 78(5):1444-51. PubMed ID: 16503592
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Microfluidic system for detection of alpha-thalassemia-1 deletion using saliva samples.
    Lien KY; Liu CJ; Kuo PL; Lee GB
    Anal Chem; 2009 Jun; 81(11):4502-9. PubMed ID: 19419160
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium.
    Han KH; Frazier AB
    Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Solid phase DNA extraction on PDMS and direct amplification.
    Pasquardini L; Potrich C; Quaglio M; Lamberti A; Guastella S; Lunelli L; Cocuzza M; Vanzetti L; Pirri CF; Pederzolli C
    Lab Chip; 2011 Dec; 11(23):4029-35. PubMed ID: 21989780
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Surface acoustic wave actuated cell sorting (SAWACS).
    Franke T; Braunmüller S; Schmid L; Wixforth A; Weitz DA
    Lab Chip; 2010 Mar; 10(6):789-94. PubMed ID: 20221569
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Determining blood cell size using microfluidic hydrodynamics.
    Inglis DW; Davis JA; Zieziulewicz TJ; Lawrence DA; Austin RH; Sturm JC
    J Immunol Methods; 2008 Jan; 329(1-2):151-6. PubMed ID: 18036608
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Dec; 11(6):1297-307. PubMed ID: 19731039
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Continuous blood cell separation by hydrophoretic filtration.
    Choi S; Song S; Choi C; Park JK
    Lab Chip; 2007 Nov; 7(11):1532-8. PubMed ID: 17960282
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device.
    Li L; Liu W; Wang J; Tu Q; Liu R; Wang J
    Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane.
    Kim J; Gale BK
    Lab Chip; 2008 Sep; 8(9):1516-23. PubMed ID: 18818807
    [TBL] [Abstract][Full Text] [Related]  

  • 98. nDEP microwells for single-cell patterning in physiological media.
    Mittal N; Rosenthal A; Voldman J
    Lab Chip; 2007 Sep; 7(9):1146-53. PubMed ID: 17713613
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.