These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 17386671)

  • 1. The detection of laser-induced structural change of MnO2 using in situ Raman spectroscopy combined with self-modeling curve resolution technique.
    Widjaja E; Sampanthar JT
    Anal Chim Acta; 2007 Mar; 585(2):241-5. PubMed ID: 17386671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of bio-constituents in complex biological tissue using Raman microscopy. Application to human nail clippings.
    Widjaja E; Garland M
    Talanta; 2010 Mar; 80(5):1665-71. PubMed ID: 20152394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Raman microscopy and band-target entropy minimization to identify minor components in model pharmaceutical tablets.
    Widjaja E; Seah RK
    J Pharm Biomed Anal; 2008 Jan; 46(2):274-81. PubMed ID: 17980994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of Raman microscopy, multiwell plate experimental designs, and BTEM analysis for high-throughput experimentation.
    Widjaja E; Li C; Garland M
    J Comb Chem; 2009 Mar; 11(2):261-6. PubMed ID: 19192968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-modeling curve resolution of multi-component vibrational spectroscopic data using automatic band-target entropy minimization (AutoBTEM).
    Tan ST; Zhu H; Chew W
    Anal Chim Acta; 2009 Apr; 639(1-2):29-41. PubMed ID: 19345755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis.
    Widjaja E; Kanaujia P; Lau G; Ng WK; Garland M; Saal C; Hanefeld A; Fischbach M; Maio M; Tan RB
    Eur J Pharm Sci; 2011 Jan; 42(1-2):45-54. PubMed ID: 20969956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells.
    Maher RC; Cohen LF; Lohsoontorn P; Brett DJ; Brandon NP
    J Phys Chem A; 2008 Feb; 112(7):1497-501. PubMed ID: 18225868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of spectral re-alignment and BTEM for the estimation of pure component NMR spectra from multi-component non-reactive and reactive systems.
    Guo L; Sprenger P; Garland M
    Anal Chim Acta; 2008 Feb; 608(1):48-55. PubMed ID: 18206993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. I: Self-modeling curve resolution.
    Kleimeyer JA; Harris JM
    Appl Spectrosc; 2003 Apr; 57(4):439-47. PubMed ID: 14658641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Raman microscopy and band-target entropy minimization analysis to identify dyes in a commercial stamp. Implications for authentication and counterfeit detection.
    Widjaja E; Garland M
    Anal Chem; 2008 Feb; 80(3):729-33. PubMed ID: 18181648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Raman microscopy to biodegradable double-walled microspheres.
    Widjaja E; Lee WL; Loo SC
    Anal Chem; 2010 Feb; 82(4):1277-82. PubMed ID: 20017529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Raman spectra of dilute and laser-light-sensitive [Rh(4)(CO)(9)(mu-CO)(3)] and [(mu(4)-eta(2)-3-hexyne)Rh(4)(CO)(8)(mu-CO)(2)]. Comparison with theoretically predicted spectra.
    Allian AD; Widjaja E; Garland M
    Dalton Trans; 2006 Sep; (35):4211-7. PubMed ID: 16932813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional Raman correlation spectroscopy study of an emulsion copolymerization reaction process.
    Noda I; Allen WM; Lindberg SE
    Appl Spectrosc; 2009 Feb; 63(2):224-32. PubMed ID: 19215653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical band-target entropy minimization curve resolution and Pearson VII curve-fitting analysis of cellular protein infrared imaging spectra.
    Xu W; Chen K; Liang D; Chew W
    Anal Biochem; 2009 Apr; 387(1):42-53. PubMed ID: 19166806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light sheet direct Raman imaging technique for observation of mixing of solvents.
    Oshima Y; Furihata C; Sato H
    Appl Spectrosc; 2009 Oct; 63(10):1115-20. PubMed ID: 19843361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.
    Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution.
    Fox CB; Uibel RH; Harris JM
    J Phys Chem B; 2007 Oct; 111(39):11428-36. PubMed ID: 17850068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.
    Seah RK; Garland M; Loo JS; Widjaja E
    Anal Chem; 2009 Feb; 81(4):1442-9. PubMed ID: 19170517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of band-target entropy minimization (BTEM) and residual spectral analysis to in situ reflection-absorption infrared spectroscopy (RAIRS) data from surface chemistry studies.
    Kee BH; Sim WS; Chew W
    Anal Chim Acta; 2006 Jun; 571(1):113-20. PubMed ID: 17723428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.