These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17386676)

  • 1. A new liquid-phase microextraction method based on solidification of floating organic drop.
    Khalili Zanjani MR; Yamini Y; Shariati S; Jönsson JA
    Anal Chim Acta; 2007 Mar; 585(2):286-93. PubMed ID: 17386676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and determination of 2-pyrazoline derivatives using liquid phase microextraction based on solidification of floating organic drop.
    Sobhi HR; Yamini Y; Esrafili A; Adib M
    J Pharm Biomed Anal; 2008 Dec; 48(4):1059-63. PubMed ID: 18829200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples.
    Saleh A; Yamini Y; Faraji M; Rezaee M; Ghambarian M
    J Chromatogr A; 2009 Sep; 1216(39):6673-9. PubMed ID: 19674752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography].
    Yuan J; Wang J; Xu W; Xu F; Lu X
    Se Pu; 2020 Nov; 38(11):1308-1315. PubMed ID: 34213102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-flow microextraction and gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbon compounds in water.
    Liu Y; Hashi Y; Lin JM
    Anal Chim Acta; 2007 Mar; 585(2):294-9. PubMed ID: 17386677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction combined with gas chromatography for determination of polycyclic aromatic hydrocarbons in water samples].
    Zhu B; Chen H; Li S
    Se Pu; 2012 Feb; 30(2):201-6. PubMed ID: 22679837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design.
    Sobhi HR; Yamini Y; Esrafili A; Abadi RH
    J Chromatogr A; 2008 Jul; 1196-1197():28-32. PubMed ID: 18502432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of organic compounds in water using dispersive liquid-liquid microextraction.
    Rezaee M; Assadi Y; Milani Hosseini MR; Aghaee E; Ahmadi F; Berijani S
    J Chromatogr A; 2006 May; 1116(1-2):1-9. PubMed ID: 16574135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening method for phthalate esters in water using liquid-phase microextraction based on the solidification of a floating organic microdrop combined with gas chromatography-mass spectrometry.
    Farahani H; Ganjali MR; Dinarvand R; Norouzi P
    Talanta; 2008 Aug; 76(4):718-23. PubMed ID: 18656647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples.
    Pang J; Yuan D; Huang X
    J Chromatogr A; 2018 Oct; 1571():29-37. PubMed ID: 30177269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of mononitrotoluenes in aquatic environment using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Sobhi HR; Kashtiaray A; Farahani H; Javaheri M; Ganjali MR
    J Hazard Mater; 2010 Mar; 175(1-3):279-83. PubMed ID: 19880251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction-gas chromatography-flame photometric detection.
    Khalili-Zanjani MR; Yamini Y; Yazdanfar N; Shariati S
    Anal Chim Acta; 2008 Jan; 606(2):202-8. PubMed ID: 18082651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples.
    Farahani H; Yamini Y; Shariati S; Khalili-Zanjani MR; Mansour-Baghahi S
    Anal Chim Acta; 2008 Sep; 626(2):166-73. PubMed ID: 18790117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection.
    Leong MI; Huang SD
    J Chromatogr A; 2008 Nov; 1211(1-2):8-12. PubMed ID: 18945435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-phase microextraction by solidification of floating organic microdrop and GC-MS detection of trihalomethanes in drinking water.
    Farahani H; Norouzi P; Dinarvand R; Ganjali MR
    J Sep Sci; 2009 Jan; 32(2):314-20. PubMed ID: 19072898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample.
    Moinfar S; Khayatian G; Milani-Hosseini MR
    Talanta; 2014 Nov; 129():309-14. PubMed ID: 25127600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples.
    Xu H; Ding Z; Lv L; Song D; Feng YQ
    Anal Chim Acta; 2009 Mar; 636(1):28-33. PubMed ID: 19231352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirectly suspended droplet microextraction of water-miscible organic solvents by salting-out effect for the determination of polycyclic aromatic hydrocarbons.
    Daneshfar A; Khezeli T
    Environ Toxicol Chem; 2014 Dec; 33(12):2694-701. PubMed ID: 25242239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous liquid-liquid microextraction via flotation assistance for rapid and efficient determination of polycyclic aromatic hydrocarbons in water samples.
    Hosseini MH; Rezaee M; Akbarian S; Mizani F; Pourjavid MR; Arabieh M
    Anal Chim Acta; 2013 Jan; 762():54-60. PubMed ID: 23327945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and enrichment of polycyclic aromatic hydrocarbons in environmental water samples by column clean-up coupled with continuous flow single drop microextraction.
    Li Y; Zhang L; Wu L; Sun S; Shan H; Wang Z
    J Chromatogr A; 2018 Sep; 1567():81-89. PubMed ID: 30031536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.