BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17386748)

  • 1. Optimization of zeta potential profile for low-dispersion flows in microchannel turns.
    Park HM; Hong SM; Lee JS
    Anal Chim Acta; 2007 Mar; 587(1):14-21. PubMed ID: 17386748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion control in microfluidic chips by localized zeta potential variation using the field effect.
    Lee GB; Fu LM; Lin CH; Lee CY; Yang RJ
    Electrophoresis; 2004 Jun; 25(12):1879-87. PubMed ID: 15213988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of inhomogeneous zeta potential using velocity measurements of EOF.
    Park HM; Lee JS
    Electrophoresis; 2007 May; 28(10):1499-507. PubMed ID: 17447245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements.
    Park HM; Kim TW
    Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band spreading control in electrophoresis microchips by localized zeta-potential variation using field-effect.
    Lee CY; Lin CH; Fu LM
    Analyst; 2004 Oct; 129(10):931-7. PubMed ID: 15457326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.
    Yan D; Nguyen NT; Yang C; Huang X
    J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):187-202. PubMed ID: 14743473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy.
    Wang K; Xia XH
    J Chromatogr A; 2006 Mar; 1110(1-2):222-6. PubMed ID: 16458907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low electroosmotic flow measurement by tilting microchip.
    Zhou F; Wang W; Wu WY; Zhang JR; Zhu JJ
    J Chromatogr A; 2008 Jun; 1194(2):221-4. PubMed ID: 18499115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ac electroosmosis in rectangular microchannels.
    Campisi M; Accoto D; Dario P
    J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte coatings for microchip capillary electrophoresis.
    Liu Y; Henry CS
    Methods Mol Biol; 2006; 339():57-64. PubMed ID: 16790867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
    Park HM; Lee WM
    J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeta potential of microfluidic substrates: 2. Data for polymers.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):203-13. PubMed ID: 14743474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument.
    Wang GR; Sas I; Jiang H; Janzen WP; Hodge CN
    Electrophoresis; 2008 Mar; 29(6):1253-63. PubMed ID: 18297657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.