These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 17387519)

  • 1. A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032.
    Zhi W; Shouwen C; Lifang R; Ming S; Ziniu Y
    Bioprocess Biosyst Eng; 2007 Jul; 30(4):225-9. PubMed ID: 17387519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fundamental dual regulatory role of citrate on the biosyntheses of thuringiensin and poly-beta-hydroxybutyrate in Bacillus thuringiensis YBT-032.
    Wang Z; Chen S; Sun M; Yu Z
    Biotechnol Lett; 2007 May; 29(5):779-84. PubMed ID: 17279445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penicillin-G enhanced production of thuringiensin by Bacillus thuringiensis sp. darmstadiensis.
    Tzeng YM; Young YH
    Biotechnol Prog; 1995; 11(2):231-4. PubMed ID: 7766105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Differential expression protein between the thuringiensin-yield Bacillus thuringiensis strain CT-43 and its mutants].
    Guo C; Hu Z; Liu X; Yu Z; Ruan L; Sun M; Yu Z
    Wei Sheng Wu Xue Bao; 2008 Jul; 48(7):970-4. PubMed ID: 18837379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of shear stress on cultivation of Bacillus thuringiensis for thuringiensin production.
    Wu WT; Hsu YL; Ko YF; Yao LL
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):175-7. PubMed ID: 11876409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of thuringiensin by high-performance liquid chromatography using adenosine monophosphate as an internal standard.
    Liu CM; Tzeng YM
    J Chromatogr Sci; 1998 Jul; 36(7):340-4. PubMed ID: 9679301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis.
    Liu XY; Ruan LF; Hu ZF; Peng DH; Cao SY; Yu ZN; Liu Y; Zheng JS; Sun M
    J Biol Chem; 2010 Dec; 285(50):39191-200. PubMed ID: 20864531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety testing of Bacillus thuringiensis preparations, including thuringiensin, using the Salmonella assay.
    Carlberg G; Tikkanen L; Abdel-Hameed AH
    J Invertebr Pathol; 1995 Jul; 66(1):68-71. PubMed ID: 7658050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCR-based prediction of type I β-exotoxin production in Bacillus thuringiensis strains.
    Sauka DH; Pérez MP; López NN; Onco MI; Berretta MF; Benintende GB
    J Invertebr Pathol; 2014 Oct; 122():28-31. PubMed ID: 25132154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch culture of Bacillus thuringiensis based on motile intensity.
    Chen S; Hong JY; Wu WT
    J Ind Microbiol Biotechnol; 2003 Dec; 30(12):677-81. PubMed ID: 14648344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.
    Liu X; Ruan L; Peng D; Li L; Sun M; Yu Z
    Toxins (Basel); 2014 Jul; 6(8):2229-38. PubMed ID: 25068925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved bioassay for the detection of Bacillus thuringiensis beta-exotoxin.
    Mac Innes TC; Bouwer G
    J Invertebr Pathol; 2009 Jun; 101(2):137-9. PubMed ID: 19358852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of oxidative stress in thuringiensin-induced pulmonary toxicity.
    Tsai SF; Yang C; Liu BL; Hwang JS; Ho SP
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):347-53. PubMed ID: 16839580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fed-batch culture of Bacillus thuringiensis for thuringiensin production in a tower type bioreactor.
    Jong JZ; Hsiun DY; Wu WT; Tzeng YM
    Biotechnol Bioeng; 1995 Nov; 48(3):207-13. PubMed ID: 18623480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of agouti-related peptide expression by glucose in a clonal hypothalamic neuronal cell line is mediated by glycolysis, not oxidative phosphorylation.
    Cheng H; Isoda F; Belsham DD; Mobbs CV
    Endocrinology; 2008 Feb; 149(2):703-10. PubMed ID: 17974626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro maturation.
    Alvarez GM; Ferretti EL; Gutnisky C; Dalvit GC; Cetica PD
    Reprod Domest Anim; 2013 Aug; 48(4):545-53. PubMed ID: 23189959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a confirmative LC-MS/MS method for the determination of ß-exotoxin thuringiensin in plant protection products and selected greenhouse crops.
    de Rijk TC; van Dam RC; Zomer P; Boers EA; de Waard P; Mol HG
    Anal Bioanal Chem; 2013 Feb; 405(5):1631-9. PubMed ID: 23208288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.