These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 17387593)
1. Bone tissue reaction to Ti-48Al-2Cr-2Nb (at.%) in a rodent model: a preliminary SEM study. Castañeda-Muñoz DF; Sundaram PA; Ramírez N J Mater Sci Mater Med; 2007 Jul; 18(7):1433-8. PubMed ID: 17387593 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. Rivera-Denizard O; Diffoot-Carlo N; Navas V; Sundaram PA J Mater Sci Mater Med; 2008 Jan; 19(1):153-8. PubMed ID: 17597368 [TBL] [Abstract][Full Text] [Related]
3. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution. Delgado-Alvarado C; Sundaram PA Acta Biomater; 2006 Nov; 2(6):701-8. PubMed ID: 16887397 [TBL] [Abstract][Full Text] [Related]
4. Electron Beam Powder Bed Fusion of Ti-48Al-2Cr-2Nb Open Porous Scaffold for Biomedical Applications: Process Parameters, Adhesion, and Proliferation of NIH-3T3 Cells. Galati M; Gatto ML; Bloise N; Fassina L; Saboori A; Visai L; Mengucci P; Iuliano L 3D Print Addit Manuf; 2024 Feb; 11(1):314-322. PubMed ID: 38389689 [TBL] [Abstract][Full Text] [Related]
5. A histological investigation on tissue responses to titanium implants in cortical bone of the rat femur. Ohtsu A; Kusakari H; Maeda T; Takano Y J Periodontol; 1997 Mar; 68(3):270-83. PubMed ID: 9100203 [TBL] [Abstract][Full Text] [Related]
6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
7. Engineering bone-implant integration with photofunctionalized titanium microfibers. Park W; Ishijima M; Hirota M; Soltanzadeh P; Ogawa T J Biomater Appl; 2016 Mar; 30(8):1242-50. PubMed ID: 26656313 [TBL] [Abstract][Full Text] [Related]
8. In vivo evaluation of a Ti-based bulk metallic glass alloy bar. Kokubun R; Wang W; Zhu S; Xie G; Ichinose S; Itoh S; Takakuda K Biomed Mater Eng; 2015; 26(1-2):9-17. PubMed ID: 26484551 [TBL] [Abstract][Full Text] [Related]
9. Comparison of tissue reaction and osteointegration of metal implants between hydroxyapatite/Ti alloy coat: an animal experimental study. Itiravivong P; Promasa A; Laiprasert T; Techapongworachai T; Kuptniratsaikul S; Thanakit V; Heimann RB J Med Assoc Thai; 2003 Jun; 86 Suppl 2():S422-31. PubMed ID: 12930020 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo studies of alkali- and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants. Tamilselvi S; Raghavendran HB; Srinivasan P; Rajendran N J Biomed Mater Res A; 2009 Aug; 90(2):380-6. PubMed ID: 18523948 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Kohal RJ; Wolkewitz M; Hinze M; Han JS; Bächle M; Butz F Clin Oral Implants Res; 2009 Apr; 20(4):333-9. PubMed ID: 19298287 [TBL] [Abstract][Full Text] [Related]
12. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Giavaresi G; Ambrosio L; Battiston GA; Casellato U; Gerbasi R; Finia M; Aldini NN; Martini L; Rimondini L; Giardino R Biomaterials; 2004 Nov; 25(25):5583-91. PubMed ID: 15159074 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of alumina toughened zirconia implants with a sintered, moderately rough surface: An experiment in the rat. Kohal RJ; Bächle M; Renz A; Butz F Dent Mater; 2016 Jan; 32(1):65-72. PubMed ID: 26621027 [TBL] [Abstract][Full Text] [Related]
14. Vitamin D and bone physiology: demonstration of vitamin D deficiency in an implant osseointegration rat model. Kelly J; Lin A; Wang CJ; Park S; Nishimura I J Prosthodont; 2009 Aug; 18(6):473-8. PubMed ID: 19486459 [TBL] [Abstract][Full Text] [Related]
15. Characterization of bone around titanium implants and bioactive glass particles: an experimental study in rats. Gorustovich A; Rosenbusch M; Guglielmotti MB Int J Oral Maxillofac Implants; 2002; 17(5):644-50. PubMed ID: 12381064 [TBL] [Abstract][Full Text] [Related]
16. Comparative evaluation of the combined application of titanium implants and calcium phosphate bone substitutes in a rabbit model. Alsayed A; Anil S; Jansen JA; van den Beucken JJ Clin Oral Implants Res; 2015 Oct; 26(10):1215-21. PubMed ID: 24975691 [TBL] [Abstract][Full Text] [Related]
17. The bisphosphonate ibandronate accelerates osseointegration of hydroxyapatite-coated cementless implants in an animal model. Eberhardt C; Habermann B; Müller S; Schwarz M; Bauss F; Kurth AH J Orthop Sci; 2007 Jan; 12(1):61-6. PubMed ID: 17260119 [TBL] [Abstract][Full Text] [Related]
18. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Ueno T; Tsukimura N; Yamada M; Ogawa T Biomaterials; 2011 Oct; 32(30):7297-308. PubMed ID: 21742375 [TBL] [Abstract][Full Text] [Related]
19. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Gauthier O; Müller R; von Stechow D; Lamy B; Weiss P; Bouler JM; Aguado E; Daculsi G Biomaterials; 2005 Sep; 26(27):5444-53. PubMed ID: 15860201 [TBL] [Abstract][Full Text] [Related]
20. Comparison of bone-implant interface shear strength of hydroxyapatite-coated and alumina-coated metal implants. Inadome T; Hayashi K; Nakashima Y; Tsumura H; Sugioka Y J Biomed Mater Res; 1995 Jan; 29(1):19-24. PubMed ID: 7713954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]