These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17387746)
1. Computer-assisted estimation in the CNS of 3D multimarker 'overlap' or 'touch' at the level of individual nerve endings: a confocal laser scanning microscope application. Wouterlood FG; Boekel AJ; Meijer GA; Beliën JA J Neurosci Res; 2007 May; 85(6):1215-28. PubMed ID: 17387746 [TBL] [Abstract][Full Text] [Related]
2. Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex. Wouterlood FG; Canto CB; Aliane V; Boekel AJ; Grosche J; Härtig W; Beliën JA; Witter MP Brain Struct Funct; 2007 Dec; 212(3-4):303-19. PubMed ID: 17965879 [TBL] [Abstract][Full Text] [Related]
3. Counting contacts between neurons in 3D in confocal laser scanning images. Wouterlood FG; Boekel AJ; Kajiwara R; Beliën JA J Neurosci Methods; 2008 Jun; 171(2):296-308. PubMed ID: 18471891 [TBL] [Abstract][Full Text] [Related]
4. Cholinergic endings on various neurones containing calcium binding proteins and glutamic acid decarboxylase in the hippocampus of the rat. Ludkiewicz B; Wójcik S; Spodnik E; Domaradzka-Pytel B; Moryś J Folia Morphol (Warsz); 2000; 59(4):263-70. PubMed ID: 11107697 [TBL] [Abstract][Full Text] [Related]
6. Confocal laser scanning microscopy and 3-D reconstructions of neuronal structures in human brain cortex. Belichenko PV; Dahlström A Neuroimage; 1995 Sep; 2(3):201-7. PubMed ID: 9343603 [TBL] [Abstract][Full Text] [Related]
7. Quantitative immunofluorescence data suggest a permanently enhanced GAD67/GAD65 ratio in nerve endings in rat cerebral cortex damaged by early postnatal hypoxia-ischemia: a comparison between two computer-assisted procedures for quantification of confocal laser scanning microscopic immunofluorescence images. Romijn HJ; Janszen AW; van Marle J Brain Res; 1994 Sep; 657(1-2):245-57. PubMed ID: 7820625 [TBL] [Abstract][Full Text] [Related]
8. Automated three-dimensional detection and counting of neuron somata. Oberlaender M; Dercksen VJ; Egger R; Gensel M; Sakmann B; Hege HC J Neurosci Methods; 2009 May; 180(1):147-60. PubMed ID: 19427542 [TBL] [Abstract][Full Text] [Related]
9. Double-label confocal laser-scanning microscopy, image restoration, and real-time three-dimensional reconstruction to study axons in the central nervous system and their contacts with target neurons. Wouterlood FG; van Haeften T; Blijleven N; Pérez-Templado P; Pérez-Templado H Appl Immunohistochem Mol Morphol; 2002 Mar; 10(1):85-95. PubMed ID: 11893043 [TBL] [Abstract][Full Text] [Related]
10. Correlative electron and confocal microscopy assessment of synapse localization in the central nervous system of an insect. Hohensee S; Bleiss W; Duch C J Neurosci Methods; 2008 Feb; 168(1):64-70. PubMed ID: 17980437 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional computer reconstruction of large tissue volumes based on composing series of high-resolution confocal images by GlueMRC and LinkMRC software. Karen P; Jirkovská M; Tomori Z; Demjénová E; Janácek J; Kubínová L Microsc Res Tech; 2003 Dec; 62(5):415-22. PubMed ID: 14601147 [TBL] [Abstract][Full Text] [Related]
12. Application of the Cavalieri principle in volume estimation using laser confocal microscopy. Prakash YS; Smithson KG; Sieck GC Neuroimage; 1994 Nov; 1(4):325-33. PubMed ID: 9343582 [TBL] [Abstract][Full Text] [Related]
13. Synaptic contacts of vesicular glutamate transporter 2 fibres on chemically identified neurons of the hypothalamic suprachiasmatic nucleus of the rat. Kiss J; Csáki A; Csaba Z; Halász B Eur J Neurosci; 2008 Nov; 28(9):1760-74. PubMed ID: 18973592 [TBL] [Abstract][Full Text] [Related]
14. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy. Pawliczek P; Romanowska-Pawliczek A; Soltys Z Microsc Res Tech; 2010 Mar; 73(3):187-94. PubMed ID: 19725070 [TBL] [Abstract][Full Text] [Related]
15. Quantification and characterization of GABA-ergic amacrine cells in the retina of GAD67-GFP knock-in mice. May CA; Nakamura K; Fujiyama F; Yanagawa Y Acta Ophthalmol; 2008 Jun; 86(4):395-400. PubMed ID: 17995983 [TBL] [Abstract][Full Text] [Related]
16. Coexpression of the mu-opioid receptor splice variant MOR1C and the vesicular glutamate transporter 2 (VGLUT2) in rat central nervous system. Schnell SA; Wessendorf MW J Comp Neurol; 2008 Jun; 508(4):542-64. PubMed ID: 18381590 [TBL] [Abstract][Full Text] [Related]
17. Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Konakci KZ; Streicher J; Hoetzenecker W; Blumer MJ; Lukas JR; Blumer R Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):155-65. PubMed ID: 15623769 [TBL] [Abstract][Full Text] [Related]
18. Integration of confocal and atomic force microscopy images. Kondra S; Laishram J; Ban J; Migliorini E; Di Foggia V; Lazzarino M; Torre V; Ruaro ME J Neurosci Methods; 2009 Feb; 177(1):94-107. PubMed ID: 18996410 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional analyses of touch domes in the hairy skin of the cat paw reveal morphological substrates for complex sensory processing. Ebara S; Kumamoto K; Baumann KI; Halata Z Neurosci Res; 2008 Jun; 61(2):159-71. PubMed ID: 18378347 [TBL] [Abstract][Full Text] [Related]
20. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. Capek M; Brůza P; Janácek J; Karen P; Kubínová L; Vagnerová R Microsc Res Tech; 2009 Feb; 72(2):110-9. PubMed ID: 19003887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]