BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17388072)

  • 21. Effect of surface roughness and stainless steel finish on Listeria monocytogenes attachment and biofilm formation.
    Rodriguez A; Autio WR; McLandsborough LA
    J Food Prot; 2008 Jan; 71(1):170-5. PubMed ID: 18236679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacy of ultraviolet light exposure against survival of Listeria monocytogenes on conveyor belts.
    Morey A; McKee SR; Dickson JS; Singh M
    Foodborne Pathog Dis; 2010 Jun; 7(6):737-40. PubMed ID: 20113207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A predictive model for heat inactivation of Listeria monocytogenes biofilm on stainless steel.
    Chmielewski RA; Frank JF
    J Food Prot; 2004 Dec; 67(12):2712-8. PubMed ID: 15633676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine.
    Lundén JM; Autio TJ; Korkeala HJ
    J Food Prot; 2002 Jul; 65(7):1129-33. PubMed ID: 12117246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficacy of cleaning and sanitation methods against Listeria innocua on apple packing equipment surfaces.
    Ruiz-Llacsahuanga B; Hamilton AM; Anderson K; Critzer F
    Food Microbiol; 2022 Oct; 107():104061. PubMed ID: 35953171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises.
    Carpentier B; Chassaing D
    Int J Food Microbiol; 2004 Dec; 97(2):111-22. PubMed ID: 15541798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Listeria monocytogenes attachment to and detachment from stainless steel surfaces in a simulated dairy processing environment.
    Poimenidou S; Belessi CA; Giaouris ED; Gounadaki AS; Nychas GJ; Skandamis PN
    Appl Environ Microbiol; 2009 Nov; 75(22):7182-8. PubMed ID: 19767476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes.
    Hillig N; Schumann-Muck F; Hamedy A; Braun PG; Koethe M
    Folia Microbiol (Praha); 2024 Feb; 69(1):173-180. PubMed ID: 37688746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-process treatments are effective strategies to reduce Listeria monocytogenes on the surface of leafy greens: A pilot study.
    Truchado P; Elsser-Gravesen A; Gil MI; Allende A
    Int J Food Microbiol; 2020 Jan; 313():108390. PubMed ID: 31678818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attachment of Listeria monocytogenes to an austenitic stainless steel after welding and accelerated corrosion treatments.
    Mai TL; Sofyan NI; Fergus JW; Gale WF; Conner DE
    J Food Prot; 2006 Jul; 69(7):1527-32. PubMed ID: 16865881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion to and viability of Listeria monocytogenes on food contact surfaces.
    Silva S; Teixeira P; Oliveira R; Azeredo J
    J Food Prot; 2008 Jul; 71(7):1379-85. PubMed ID: 18680936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm.
    Ganegama Arachchi GJ; Cridge AG; Dias-Wanigasekera BM; Cruz CD; McIntyre L; Liu R; Flint SH; Mutukumira AN
    J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1105-16. PubMed ID: 23907252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-contamination between processing equipment and deli meats by Listeria monocytogenes.
    Lin CM; Takeuchi K; Zhang L; Dohm CB; Meyer JD; Hall PA; Doyle MP
    J Food Prot; 2006 Jan; 69(1):71-9. PubMed ID: 16416903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced oxidation technology with photohydroionization as a surface treatment for controlling Listeria monocytogenes on stainless steel surfaces and ready-to-eat cheese and turkey.
    Saini JK; Marsden JL; Getty KJ; Fung DY
    Foodborne Pathog Dis; 2014 Apr; 11(4):295-300. PubMed ID: 24444302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment.
    Dygico LK; Gahan CGM; Grogan H; Burgess CM
    Int J Food Microbiol; 2020 Mar; 317():108385. PubMed ID: 31783343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent Listeria monocytogenes Isolates from Gorgonzola Cheese Processing Plants.
    Costa A; Bertolotti L; Brito L; Civera T
    Foodborne Pathog Dis; 2016 Nov; 13(11):602-609. PubMed ID: 27462729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential fluorescent staining of Listeria monocytogenes and a whey food soil for quantitative analysis of surface hygiene.
    Whitehead KA; Benson P; Verran J
    Int J Food Microbiol; 2009 Sep; 135(1):75-80. PubMed ID: 19654071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface material, temperature, and soil effects on the survival of selected foodborne pathogens in the presence of condensate.
    Allan JT; Yan Z; Kornacki JL
    J Food Prot; 2004 Dec; 67(12):2666-70. PubMed ID: 15633669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of Listeria monocytogenes biofilms with bacteriophage P100.
    Soni KA; Nannapaneni R
    J Food Prot; 2010 Aug; 73(8):1519-24. PubMed ID: 20819365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.